Fundamental thresholds of realistic quantum error correction circuits
from classical spin models
- URL: http://arxiv.org/abs/2104.04847v2
- Date: Wed, 22 Dec 2021 09:58:26 GMT
- Title: Fundamental thresholds of realistic quantum error correction circuits
from classical spin models
- Authors: Davide Vodola, Manuel Rispler, Seyong Kim, Markus M\"uller
- Abstract summary: We use Monte-Carlo simulations to study the resulting phase diagram of the associated interacting spin model.
The presented method provides an avenue to assess the fundamental thresholds of QEC codes and associated readout circuitry, independent of specific decoding strategies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mapping quantum error correcting codes to classical disordered statistical
mechanics models and studying the phase diagram of the latter has proven a
powerful tool to study the fundamental error robustness and associated critical
error thresholds of leading quantum error correcting codes under
phenomenological noise models. In this work, we extend this mapping to admit
realistic, multi-parameter faulty quantum circuits in the description of
quantum error correcting codes. Based on the underlying microscopic circuit
noise model, we first systematically derive the associated strongly correlated
classical spin models. We illustrate this approach in detail for the example of
a quantum repetition code in which faulty stabilizer readout circuits are
periodically applied. Finally, we use Monte-Carlo simulations to study the
resulting phase diagram of the associated interacting spin model and benchmark
our results against a minimum-weight perfect matching decoder. The presented
method provides an avenue to assess the fundamental thresholds of QEC codes and
associated readout circuitry, independent of specific decoding strategies, and
can thereby help guiding the development of near-term QEC hardware.
Related papers
- Low-density parity-check representation of fault-tolerant quantum circuits [5.064729356056529]
In fault-tolerant quantum computing, quantum algorithms are implemented through quantum circuits capable of error correction.
This paper presents a toolkit for designing and analysing fault-tolerant quantum circuits.
arXiv Detail & Related papers (2024-03-15T12:56:38Z) - Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
We construct a fault-tolerant quantum error-correcting protocol based on a qubit encoded in a large spin qudit using a spin-cat code.
We show how to generate a universal gate set, including the rank-preserving CNOT gate, using quantum control and the Rydberg blockade.
These findings pave the way for encoding a qubit in a large spin with the potential to achieve fault tolerance, high threshold, and reduced resource overhead in quantum information processing.
arXiv Detail & Related papers (2024-01-08T22:56:05Z) - Quantum computer error structure probed by quantum error correction syndrome measurements [0.6435156676256051]
We have assessed the performance of IBM superconducting quantum computer devices implementing heavy-hexagon code syndrome measurements.
Data from 16 repeated syndrome measurement cycles was found to be inconsistent with a uniform depolarizing noise model.
Results highlight the non-trivial structure which may be present in the noise of quantum error correction circuits.
arXiv Detail & Related papers (2023-10-19T03:55:44Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Improving readout in quantum simulations with repetition codes [0.0]
We use repetition codes as scalable schemes with the potential to provide more accurate solutions to problems of interest in quantum chemistry and physics.
We showcase our approach in multiple IBM Quantum devices and validate our results using a simplified theoretical noise model.
arXiv Detail & Related papers (2021-05-27T18:01:05Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.