Taxonomy to Regulation: A (Geo)Political Taxonomy for AI Risks and Regulatory Measures in the EU AI Act
- URL: http://arxiv.org/abs/2404.11476v1
- Date: Wed, 17 Apr 2024 15:32:56 GMT
- Title: Taxonomy to Regulation: A (Geo)Political Taxonomy for AI Risks and Regulatory Measures in the EU AI Act
- Authors: Sinan Arda,
- Abstract summary: This work proposes a taxonomy focusing on (geo)political risks associated with AI.
It identifies 12 risks in total divided into four categories: (1) Geopolitical Pressures, (2) Malicious Usage, (3) Environmental, Social, and Ethical Risks, and (4) Privacy and Trust Violations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Technological innovations have shown remarkable capabilities to benefit and harm society alike. AI constitutes a democratized sophisticated technology accessible to large parts of society, including malicious actors. This work proposes a taxonomy focusing on on (geo)political risks associated with AI. It identifies 12 risks in total divided into four categories: (1) Geopolitical Pressures, (2) Malicious Usage, (3) Environmental, Social, and Ethical Risks, and (4) Privacy and Trust Violations. Incorporating a regulatory side, this paper conducts a policy assessment of the EU AI Act. Adopted in March 2023, the landmark regulation has the potential to have a positive top-down impact concerning AI risk reduction but needs regulatory adjustments to mitigate risks more comprehensively. Regulatory exceptions for open-source models, excessively high parameters for the classification of GPAI models as a systemic risk, and the exclusion of systems designed exclusively for military purposes from the regulation's obligations leave room for future action.
Related papers
- The AI Risk Repository: A Comprehensive Meta-Review, Database, and Taxonomy of Risks From Artificial Intelligence [35.77247656798871]
The risks posed by Artificial Intelligence (AI) are of considerable concern to academics, auditors, policymakers, AI companies, and the public.
A lack of shared understanding of AI risks can impede our ability to comprehensively discuss, research, and react to them.
This paper addresses this gap by creating an AI Risk Repository to serve as a common frame of reference.
arXiv Detail & Related papers (2024-08-14T10:32:06Z) - AI Risk Categorization Decoded (AIR 2024): From Government Regulations to Corporate Policies [88.32153122712478]
We identify 314 unique risk categories organized into a four-tiered taxonomy.
At the highest level, this taxonomy encompasses System & Operational Risks, Content Safety Risks, Societal Risks, and Legal & Rights Risks.
We aim to advance AI safety through information sharing across sectors and the promotion of best practices in risk mitigation for generative AI models and systems.
arXiv Detail & Related papers (2024-06-25T18:13:05Z) - Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Applications of Generative AI (Gen AI) are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about the potential risks of the technology, and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source generative AI.
arXiv Detail & Related papers (2024-05-14T13:37:36Z) - Near to Mid-term Risks and Opportunities of Open-Source Generative AI [94.06233419171016]
Applications of Generative AI are expected to revolutionize a number of different areas, ranging from science & medicine to education.
The potential for these seismic changes has triggered a lively debate about potential risks and resulted in calls for tighter regulation.
This regulation is likely to put at risk the budding field of open-source Generative AI.
arXiv Detail & Related papers (2024-04-25T21:14:24Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
The development and regulation of AI seems to have reached a critical stage.
Some experts are calling for a moratorium on the training of AI systems more powerful than GPT-4.
This paper analyses the most advanced legal proposal, the European Union's AI Act.
arXiv Detail & Related papers (2023-11-03T12:51:37Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - Regulation and NLP (RegNLP): Taming Large Language Models [51.41095330188972]
We argue how NLP research can benefit from proximity to regulatory studies and adjacent fields.
We advocate for the development of a new multidisciplinary research space on regulation and NLP.
arXiv Detail & Related papers (2023-10-09T09:22:40Z) - Normative Challenges of Risk Regulation of Artificial Intelligence and
Automated Decision-Making [0.0]
Recent proposals aim at regulating artificial intelligence (AI) and automated decision-making (ADM)
The most salient example is the Artificial Intelligence Act (AIA) proposed by the European Commission.
This article addresses challenges for adequate risk regulation that arise primarily from the specific type of risks involved.
arXiv Detail & Related papers (2022-11-11T13:57:38Z) - Quantitative AI Risk Assessments: Opportunities and Challenges [9.262092738841979]
AI-based systems are increasingly being leveraged to provide value to organizations, individuals, and society.
Risks have led to proposed regulations, litigation, and general societal concerns.
This paper explores the concept of a quantitative AI Risk Assessment.
arXiv Detail & Related papers (2022-09-13T21:47:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.