論文の概要: Simple Image Signal Processing using Global Context Guidance
- arxiv url: http://arxiv.org/abs/2404.11569v2
- Date: Wed, 25 Sep 2024 17:53:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 03:14:33.967214
- Title: Simple Image Signal Processing using Global Context Guidance
- Title(参考訳): Global Context Guidance を用いた簡易画像信号処理
- Authors: Omar Elezabi, Marcos V. Conde, Radu Timofte,
- Abstract要約: ディープラーニングベースのISPは、深層ニューラルネットワークを使用してRAW画像をDSLRライクなRGBイメージに変換することを目指している。
我々は,全RAW画像からグローバルなコンテキスト情報をキャプチャするために,任意のニューラルISPに統合可能な新しいモジュールを提案する。
本モデルでは,多種多様な実スマートフォン画像を用いて,様々なベンチマークで最新の結果が得られる。
- 参考スコア(独自算出の注目度): 56.41827271721955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In modern smartphone cameras, the Image Signal Processor (ISP) is the core element that converts the RAW readings from the sensor into perceptually pleasant RGB images for the end users. The ISP is typically proprietary and handcrafted and consists of several blocks such as white balance, color correction, and tone mapping. Deep learning-based ISPs aim to transform RAW images into DSLR-like RGB images using deep neural networks. However, most learned ISPs are trained using patches (small regions) due to computational limitations. Such methods lack global context, which limits their efficacy on full-resolution images and harms their ability to capture global properties such as color constancy or illumination. First, we propose a novel module that can be integrated into any neural ISP to capture the global context information from the full RAW images. Second, we propose an efficient and simple neural ISP that utilizes our proposed module. Our model achieves state-of-the-art results on different benchmarks using diverse and real smartphone images.
- Abstract(参考訳): 現代のスマートフォンカメラでは、画像信号処理装置(ISP)はセンサーからのRAW読み出しをエンドユーザーにとって知覚的に快適なRGB画像に変換するコア要素である。
ISPは通常プロプライエタリで手作りで、ホワイトバランス、色補正、トーンマッピングなどいくつかのブロックで構成されている。
ディープラーニングベースのISPは、深層ニューラルネットワークを使用してRAW画像をDSLRライクなRGBイメージに変換することを目指している。
しかし、ほとんどの学習済みISPは、計算上の制限のためにパッチ(小さな領域)を使って訓練されている。
このような方法にはグローバルなコンテキストが欠如しており、フル解像度画像に対する有効性を制限し、色濃度や照明などのグローバルな特性をキャプチャする能力を損なう。
まず,全RAW画像からグローバルなコンテキスト情報をキャプチャするために,任意のニューラルISPに統合可能な新しいモジュールを提案する。
次に,提案するモジュールを利用した,効率的でシンプルなニューラルISPを提案する。
本モデルでは,多種多様な実スマートフォン画像を用いて,様々なベンチマークで最新の結果が得られる。
関連論文リスト
- Rawformer: Unpaired Raw-to-Raw Translation for Learnable Camera ISPs [53.68932498994655]
本稿では,多種多様なカメラを用いた生と生の翻訳の未ペアリング学習手法を提案する。
特定のカメラが捉えた生画像をターゲットカメラに正確にマッピングし、学習可能なISPを新しい目に見えないカメラに一般化する。
提案手法は,従来の最先端技術と比較して精度が高く,実際のカメラデータセットに優れた性能を示す。
論文 参考訳(メタデータ) (2024-04-16T16:17:48Z) - MetaISP -- Exploiting Global Scene Structure for Accurate Multi-Device
Color Rendition [17.986236212580565]
異なるデバイスの色と局所的なコントラスト特性の変換方法を学ぶために設計されたモデルであるMetaISPを提案する。
興味あるデバイスに基づいて出力の外観を調節する軽量な深層学習技術を用いて,この結果を実現する。
論文 参考訳(メタデータ) (2024-01-06T14:06:29Z) - Enhancing RAW-to-sRGB with Decoupled Style Structure in Fourier Domain [27.1716081216131]
現在の方法では、携帯電話のRAW画像とDSLRカメラのRGB画像の違いを無視する。
本稿では、新しいNeural ISPフレームワーク、FourierISPを紹介する。
このアプローチは、画像を周波数領域内のスタイルと構造に分解し、独立した最適化を可能にする。
論文 参考訳(メタデータ) (2024-01-04T09:18:31Z) - BSRAW: Improving Blind RAW Image Super-Resolution [63.408484584265985]
RAW領域におけるブラインド画像の超解像化に取り組む。
生センサデータを用いたトレーニングモデルに特化した,現実的な劣化パイプラインを設計する。
私たちのパイプラインでトレーニングしたBSRAWモデルは、リアルタイムRAW画像をスケールアップし、品質を向上させることができます。
論文 参考訳(メタデータ) (2023-12-24T14:17:28Z) - Efficient Visual Computing with Camera RAW Snapshots [41.9863557302409]
従来のカメラはセンサ上の画像光を捕捉し、画像信号プロセッサ(ISP)を用いてRGB画像に変換する。
RAW画像にはキャプチャされた全ての情報が含まれているため、ISPを用いたRAWからRGBへの変換はビジュアルコンピューティングには必要ないと論じることができる。
RAW画像を用いた高レベルセマンティック理解と低レベル圧縮を実現するための新しい$rho$-Visionフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-15T12:54:21Z) - Reversed Image Signal Processing and RAW Reconstruction. AIM 2022
Challenge Report [109.2135194765743]
本稿では,AIM 2022 Challenge on Reversed Image Signal Processing and RAW Reconstructionを紹介する。
我々は,メタデータを使わずにRGBから生のセンサイメージを回収し,ISP変換を「逆」することを目的としている。
論文 参考訳(メタデータ) (2022-10-20T10:43:53Z) - Transform your Smartphone into a DSLR Camera: Learning the ISP in the
Wild [159.71025525493354]
本稿では,スマートフォンが取得したRAW画像に基づいて,DSLRの品質画像を生成する訓練可能な画像信号処理フレームワークを提案する。
トレーニング画像ペア間の色ずれに対処するために、カラー条件ISPネットワークを使用し、各入力RAWと基準DSLR画像間の新しいパラメトリック色マッピングを最適化する。
論文 参考訳(メタデータ) (2022-03-20T20:13:59Z) - Del-Net: A Single-Stage Network for Mobile Camera ISP [14.168130234198467]
スマートフォンカメラにおける従来の画像信号処理(ISP)パイプラインは、原センサーデータから高品質のsRGBイメージを順次再構成するための画像処理ステップで構成されている。
畳み込みニューラルネットワーク(CNN)を用いたディープラーニング手法は、画像のデノイング、コントラストの強化、超解像、デブロアリングなど、多くの画像関連タスクの解決に人気がある。
本稿では,スマートフォンの展開に適した複雑さでISPパイプライン全体を学ぶために,単一のエンドツーエンドディープラーニングモデルであるDelNetを提案する。
論文 参考訳(メタデータ) (2021-08-03T16:51:11Z) - Replacing Mobile Camera ISP with a Single Deep Learning Model [171.49776472948957]
PyNETは、きめ細かい画像復元のために設計された新しいピラミッド型CNNアーキテクチャである。
このモデルは、モバイルカメラセンサーから直接得たRAW Bayerデータを、プロのハイエンドDSLRカメラで撮影した写真に変換するように訓練されている。
論文 参考訳(メタデータ) (2020-02-13T14:22:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。