Towards Reliable Empirical Machine Unlearning Evaluation: A Cryptographic Game Perspective
- URL: http://arxiv.org/abs/2404.11577v3
- Date: Fri, 14 Feb 2025 03:03:45 GMT
- Title: Towards Reliable Empirical Machine Unlearning Evaluation: A Cryptographic Game Perspective
- Authors: Yiwen Tu, Pingbang Hu, Jiaqi Ma,
- Abstract summary: Machine unlearning updates machine learning models to remove information from specific training samples, complying with data protection regulations.
Despite the recent development of numerous unlearning algorithms, reliable evaluation of these algorithms remains an open research question.
This work presents a novel and reliable approach to empirically evaluating unlearning algorithms, paving the way for the development of more effective unlearning techniques.
- Score: 5.724350004671127
- License:
- Abstract: Machine unlearning updates machine learning models to remove information from specific training samples, complying with data protection regulations that allow individuals to request the removal of their personal data. Despite the recent development of numerous unlearning algorithms, reliable evaluation of these algorithms remains an open research question. In this work, we focus on membership inference attack (MIA) based evaluation, one of the most common approaches for evaluating unlearning algorithms, and address various pitfalls of existing evaluation metrics lacking theoretical understanding and reliability. Specifically, by modeling the proposed evaluation process as a \emph{cryptographic game} between unlearning algorithms and MIA adversaries, the naturally-induced evaluation metric measures the data removal efficacy of unlearning algorithms and enjoys provable guarantees that existing evaluation metrics fail to satisfy. Furthermore, we propose a practical and efficient approximation of the induced evaluation metric and demonstrate its effectiveness through both theoretical analysis and empirical experiments. Overall, this work presents a novel and reliable approach to empirically evaluating unlearning algorithms, paving the way for the development of more effective unlearning techniques.
Related papers
- Redefining Machine Unlearning: A Conformal Prediction-Motivated Approach [1.3731623617634434]
We identify critical limitations in existing unlearning metrics and propose enhanced evaluation metrics inspired by conformal prediction.
Our metrics can effectively capture the extent to which ground truth labels are excluded from the prediction set.
We propose an unlearning framework that integrates conformal prediction insights into Carlini & Wagner adversarial attack loss.
arXiv Detail & Related papers (2025-01-31T18:58:43Z) - Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset [94.13848736705575]
We introduce Facial Identity Unlearning Benchmark (FIUBench), a novel VLM unlearning benchmark designed to robustly evaluate the effectiveness of unlearning algorithms.
We apply a two-stage evaluation pipeline that is designed to precisely control the sources of information and their exposure levels.
Through the evaluation of four baseline VLM unlearning algorithms within FIUBench, we find that all methods remain limited in their unlearning performance.
arXiv Detail & Related papers (2024-11-05T23:26:10Z) - RESTOR: Knowledge Recovery through Machine Unlearning [71.75834077528305]
Large language models trained on web-scale corpora can memorize undesirable datapoints.
Many machine unlearning algorithms have been proposed that aim to erase' these datapoints.
We propose the RESTOR framework for machine unlearning, which evaluates the ability of unlearning algorithms to perform targeted data erasure.
arXiv Detail & Related papers (2024-10-31T20:54:35Z) - A practical approach to evaluating the adversarial distance for machine learning classifiers [2.2120851074630177]
This paper investigates the estimation of the more informative adversarial distance using iterative adversarial attacks and a certification approach.
We find that our adversarial attack approach is effective compared to related implementations, while the certification method falls short of expectations.
arXiv Detail & Related papers (2024-09-05T14:57:01Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
Recent research has begun to approach large language models (LLMs) unlearning via gradient ascent (GA)
Despite their simplicity and efficiency, we suggest that GA-based methods face the propensity towards excessive unlearning.
We propose several controlling methods that can regulate the extent of excessive unlearning.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Evaluating Machine Unlearning via Epistemic Uncertainty [78.27542864367821]
This work presents an evaluation of Machine Unlearning algorithms based on uncertainty.
This is the first definition of a general evaluation of our best knowledge.
arXiv Detail & Related papers (2022-08-23T09:37:31Z) - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms [91.3755431537592]
We analyze four broad meta-learning strategies which rely on plug-in estimation and pseudo-outcome regression.
We highlight how this theoretical reasoning can be used to guide principled algorithm design and translate our analyses into practice.
arXiv Detail & Related papers (2021-01-26T17:11:40Z) - Evaluating the Performance of Reinforcement Learning Algorithms [30.075897642052126]
Performance evaluations are critical for quantifying algorithmic advances in reinforcement learning.
Recent analyses have shown that reported performance results are often inconsistent and difficult to replicate.
We propose a new comprehensive evaluation methodology for reinforcement learning algorithms that produces reliable measurements of performance both on a single environment and when aggregated across environments.
arXiv Detail & Related papers (2020-06-30T16:52:23Z) - Interpretable Off-Policy Evaluation in Reinforcement Learning by
Highlighting Influential Transitions [48.91284724066349]
Off-policy evaluation in reinforcement learning offers the chance of using observational data to improve future outcomes in domains such as healthcare and education.
Traditional measures such as confidence intervals may be insufficient due to noise, limited data and confounding.
We develop a method that could serve as a hybrid human-AI system, to enable human experts to analyze the validity of policy evaluation estimates.
arXiv Detail & Related papers (2020-02-10T00:26:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.