Prompt Optimizer of Text-to-Image Diffusion Models for Abstract Concept Understanding
- URL: http://arxiv.org/abs/2404.11589v1
- Date: Wed, 17 Apr 2024 17:38:56 GMT
- Title: Prompt Optimizer of Text-to-Image Diffusion Models for Abstract Concept Understanding
- Authors: Zezhong Fan, Xiaohan Li, Chenhao Fang, Topojoy Biswas, Kaushiki Nag, Jianpeng Xu, Kannan Achan,
- Abstract summary: This paper introduces Prompt for Abstract Concepts (POAC) to enhance the performance of text-to-image diffusion models.
We propose a Prompt Language Model (PLM), which is curated from a pre-trained language model, and then fine-tuned with a dataset of abstract concept prompts.
Our framework employs a Reinforcement Learning (RL)-based optimization strategy, focusing on the alignment between the generated images by a stable diffusion model and optimized prompts.
- Score: 9.787025432074978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid evolution of text-to-image diffusion models has opened the door of generative AI, enabling the translation of textual descriptions into visually compelling images with remarkable quality. However, a persistent challenge within this domain is the optimization of prompts to effectively convey abstract concepts into concrete objects. For example, text encoders can hardly express "peace", while can easily illustrate olive branches and white doves. This paper introduces a novel approach named Prompt Optimizer for Abstract Concepts (POAC) specifically designed to enhance the performance of text-to-image diffusion models in interpreting and generating images from abstract concepts. We propose a Prompt Language Model (PLM), which is initialized from a pre-trained language model, and then fine-tuned with a curated dataset of abstract concept prompts. The dataset is created with GPT-4 to extend the abstract concept to a scene and concrete objects. Our framework employs a Reinforcement Learning (RL)-based optimization strategy, focusing on the alignment between the generated images by a stable diffusion model and optimized prompts. Through extensive experiments, we demonstrate that our proposed POAC significantly improves the accuracy and aesthetic quality of generated images, particularly in the description of abstract concepts and alignment with optimized prompts. We also present a comprehensive analysis of our model's performance across diffusion models under different settings, showcasing its versatility and effectiveness in enhancing abstract concept representation.
Related papers
- Weak Supervision Dynamic KL-Weighted Diffusion Models Guided by Large Language Models [0.0]
We present a novel method for improving text-to-image generation by combining Large Language Models with diffusion models.
Our approach incorporates semantic understanding from pre-trained LLMs to guide the generation process.
Our method significantly improves both the visual quality and alignment of generated images with text descriptions.
arXiv Detail & Related papers (2025-02-02T15:43:13Z) - Coherent and Multi-modality Image Inpainting via Latent Space Optimization [61.99406669027195]
PILOT (intextbfPainting vtextbfIa textbfLatent textbfOptextbfTimization) is an optimization approach grounded on a novel textitsemantic centralization and textitbackground preservation loss.
Our method searches latent spaces capable of generating inpainted regions that exhibit high fidelity to user-provided prompts while maintaining coherence with the background.
arXiv Detail & Related papers (2024-07-10T19:58:04Z) - FreeCompose: Generic Zero-Shot Image Composition with Diffusion Prior [50.0535198082903]
We offer a novel approach to image composition, which integrates multiple input images into a single, coherent image.
We showcase the potential of utilizing the powerful generative prior inherent in large-scale pre-trained diffusion models to accomplish generic image composition.
arXiv Detail & Related papers (2024-07-06T03:35:43Z) - Prompt-Consistency Image Generation (PCIG): A Unified Framework Integrating LLMs, Knowledge Graphs, and Controllable Diffusion Models [20.19571676239579]
We introduce a novel diffusion-based framework to enhance the alignment of generated images with their corresponding descriptions.
Our framework is built upon a comprehensive analysis of inconsistency phenomena, categorizing them based on their manifestation in the image.
We then integrate a state-of-the-art controllable image generation model with a visual text generation module to generate an image that is consistent with the original prompt.
arXiv Detail & Related papers (2024-06-24T06:12:16Z) - ARTIST: Improving the Generation of Text-rich Images with Disentangled Diffusion Models and Large Language Models [52.23899502520261]
We introduce a novel framework named, ARTIST, which incorporates a dedicated textual diffusion model to focus on the learning of text structures specifically.
We finetune a visual diffusion model, enabling it to assimilate textual structure information from the pretrained textual model.
This disentangled architecture design and training strategy significantly enhance the text rendering ability of the diffusion models for text-rich image generation.
arXiv Detail & Related papers (2024-06-17T19:31:24Z) - Text-to-Image Diffusion Models are Great Sketch-Photo Matchmakers [120.49126407479717]
This paper explores text-to-image diffusion models for Zero-Shot Sketch-based Image Retrieval (ZS-SBIR)
We highlight a pivotal discovery: the capacity of text-to-image diffusion models to seamlessly bridge the gap between sketches and photos.
arXiv Detail & Related papers (2024-03-12T00:02:03Z) - Layered Rendering Diffusion Model for Controllable Zero-Shot Image Synthesis [15.76266032768078]
This paper introduces innovative solutions to enhance spatial controllability in diffusion models reliant on text queries.
We first introduce vision guidance as a foundational spatial cue within the perturbed distribution.
We propose a universal framework, Layered Rendering Diffusion (LRDiff), which constructs an image-rendering process with multiple layers.
arXiv Detail & Related papers (2023-11-30T10:36:19Z) - SUR-adapter: Enhancing Text-to-Image Pre-trained Diffusion Models with
Large Language Models [56.88192537044364]
We propose a simple-yet-effective parameter-efficient fine-tuning approach called the Semantic Understanding and Reasoning adapter (SUR-adapter) for pre-trained diffusion models.
Our approach can make text-to-image diffusion models easier to use with better user experience.
arXiv Detail & Related papers (2023-05-09T05:48:38Z) - Taming Encoder for Zero Fine-tuning Image Customization with
Text-to-Image Diffusion Models [55.04969603431266]
This paper proposes a method for generating images of customized objects specified by users.
The method is based on a general framework that bypasses the lengthy optimization required by previous approaches.
We demonstrate through experiments that our proposed method is able to synthesize images with compelling output quality, appearance diversity, and object fidelity.
arXiv Detail & Related papers (2023-04-05T17:59:32Z) - Plug-and-Play Diffusion Features for Text-Driven Image-to-Image
Translation [10.39028769374367]
We present a new framework that takes text-to-image synthesis to the realm of image-to-image translation.
Our method harnesses the power of a pre-trained text-to-image diffusion model to generate a new image that complies with the target text.
arXiv Detail & Related papers (2022-11-22T20:39:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.