InFusion: Inpainting 3D Gaussians via Learning Depth Completion from Diffusion Prior
- URL: http://arxiv.org/abs/2404.11613v1
- Date: Wed, 17 Apr 2024 17:59:53 GMT
- Title: InFusion: Inpainting 3D Gaussians via Learning Depth Completion from Diffusion Prior
- Authors: Zhiheng Liu, Hao Ouyang, Qiuyu Wang, Ka Leong Cheng, Jie Xiao, Kai Zhu, Nan Xue, Yu Liu, Yujun Shen, Yang Cao,
- Abstract summary: 3D Gaussians have recently emerged as an efficient representation for novel view synthesis.
This work studies its editability with a particular focus on the inpainting task.
Compared to 2D inpainting, the crux of inpainting 3D Gaussians is to figure out the rendering-relevant properties of the introduced points.
- Score: 36.23604779569843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussians have recently emerged as an efficient representation for novel view synthesis. This work studies its editability with a particular focus on the inpainting task, which aims to supplement an incomplete set of 3D Gaussians with additional points for visually harmonious rendering. Compared to 2D inpainting, the crux of inpainting 3D Gaussians is to figure out the rendering-relevant properties of the introduced points, whose optimization largely benefits from their initial 3D positions. To this end, we propose to guide the point initialization with an image-conditioned depth completion model, which learns to directly restore the depth map based on the observed image. Such a design allows our model to fill in depth values at an aligned scale with the original depth, and also to harness strong generalizability from largescale diffusion prior. Thanks to the more accurate depth completion, our approach, dubbed InFusion, surpasses existing alternatives with sufficiently better fidelity and efficiency under various complex scenarios. We further demonstrate the effectiveness of InFusion with several practical applications, such as inpainting with user-specific texture or with novel object insertion.
Related papers
- DepthLab: From Partial to Complete [80.58276388743306]
Missing values remain a common challenge for depth data across its wide range of applications.
This work bridges this gap with DepthLab, a foundation depth inpainting model powered by image diffusion priors.
Our approach proves its worth in various downstream tasks, including 3D scene inpainting, text-to-3D scene generation, sparse-view reconstruction with DUST3R, and LiDAR depth completion.
arXiv Detail & Related papers (2024-12-24T04:16:38Z) - GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
We present GUS-IR, a novel framework designed to address the inverse rendering problem for complicated scenes featuring rough and glossy surfaces.
This paper starts by analyzing and comparing two prominent shading techniques popularly used for inverse rendering, forward shading and deferred shading.
We propose a unified shading solution that combines the advantages of both techniques for better decomposition.
arXiv Detail & Related papers (2024-11-12T01:51:05Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - Self-Evolving Depth-Supervised 3D Gaussian Splatting from Rendered Stereo Pairs [27.364205809607302]
3D Gaussian Splatting (GS) significantly struggles to accurately represent the underlying 3D scene geometry.
We address this limitation, undertaking a comprehensive analysis of the integration of depth priors throughout the optimization process.
This latter dynamically exploits depth cues from a readily available stereo network, processing virtual stereo pairs rendered by the GS model itself during training and achieving consistent self-improvement.
arXiv Detail & Related papers (2024-09-11T17:59:58Z) - Visual SLAM with 3D Gaussian Primitives and Depth Priors Enabling Novel View Synthesis [11.236094544193605]
Conventional geometry-based SLAM systems lack dense 3D reconstruction capabilities.
We propose a real-time RGB-D SLAM system that incorporates a novel view synthesis technique, 3D Gaussian Splatting.
arXiv Detail & Related papers (2024-08-10T21:23:08Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
We present a diffusion model approach based on Gaussian Splatting representation for 3D object reconstruction from a single view.
The model learns to generate 3D objects represented by sets of GS ellipsoids.
The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views.
arXiv Detail & Related papers (2024-07-05T03:43:08Z) - Hybrid Explicit Representation for Ultra-Realistic Head Avatars [55.829497543262214]
We introduce a novel approach to creating ultra-realistic head avatars and rendering them in real-time.
UV-mapped 3D mesh is utilized to capture sharp and rich textures on smooth surfaces, while 3D Gaussian Splatting is employed to represent complex geometric structures.
Experiments that our modeled results exceed those of state-of-the-art approaches.
arXiv Detail & Related papers (2024-03-18T04:01:26Z) - Depth-Regularized Optimization for 3D Gaussian Splatting in Few-Shot
Images [47.14713579719103]
We introduce a dense depth map as a geometry guide to mitigate overfitting.
The adjusted depth aids in the color-based optimization of 3D Gaussian splatting.
We verify the proposed method on the NeRF-LLFF dataset with varying numbers of few images.
arXiv Detail & Related papers (2023-11-22T13:53:04Z) - Geometric Correspondence Fields: Learned Differentiable Rendering for 3D
Pose Refinement in the Wild [96.09941542587865]
We present a novel 3D pose refinement approach based on differentiable rendering for objects of arbitrary categories in the wild.
In this way, we precisely align 3D models to objects in RGB images which results in significantly improved 3D pose estimates.
We evaluate our approach on the challenging Pix3D dataset and achieve up to 55% relative improvement compared to state-of-the-art refinement methods in multiple metrics.
arXiv Detail & Related papers (2020-07-17T12:34:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.