No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images
- URL: http://arxiv.org/abs/2410.24207v1
- Date: Thu, 31 Oct 2024 17:58:22 GMT
- Title: No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images
- Authors: Botao Ye, Sifei Liu, Haofei Xu, Xueting Li, Marc Pollefeys, Ming-Hsuan Yang, Songyou Peng,
- Abstract summary: NoPoSplat is a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from multi-view images.
Our model achieves real-time 3D Gaussian reconstruction during inference.
This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios.
- Score: 100.80376573969045
- License:
- Abstract: We introduce NoPoSplat, a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from \textit{unposed} sparse multi-view images. Our model, trained exclusively with photometric loss, achieves real-time 3D Gaussian reconstruction during inference. To eliminate the need for accurate pose input during reconstruction, we anchor one input view's local camera coordinates as the canonical space and train the network to predict Gaussian primitives for all views within this space. This approach obviates the need to transform Gaussian primitives from local coordinates into a global coordinate system, thus avoiding errors associated with per-frame Gaussians and pose estimation. To resolve scale ambiguity, we design and compare various intrinsic embedding methods, ultimately opting to convert camera intrinsics into a token embedding and concatenate it with image tokens as input to the model, enabling accurate scene scale prediction. We utilize the reconstructed 3D Gaussians for novel view synthesis and pose estimation tasks and propose a two-stage coarse-to-fine pipeline for accurate pose estimation. Experimental results demonstrate that our pose-free approach can achieve superior novel view synthesis quality compared to pose-required methods, particularly in scenarios with limited input image overlap. For pose estimation, our method, trained without ground truth depth or explicit matching loss, significantly outperforms the state-of-the-art methods with substantial improvements. This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios. Code and trained models are available at https://noposplat.github.io/.
Related papers
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - Visual SLAM with 3D Gaussian Primitives and Depth Priors Enabling Novel View Synthesis [11.236094544193605]
Conventional geometry-based SLAM systems lack dense 3D reconstruction capabilities.
We propose a real-time RGB-D SLAM system that incorporates a novel view synthesis technique, 3D Gaussian Splatting.
arXiv Detail & Related papers (2024-08-10T21:23:08Z) - A Construct-Optimize Approach to Sparse View Synthesis without Camera Pose [44.13819148680788]
We develop a novel construct-and-optimize method for sparse view synthesis without camera poses.
Specifically, we construct a solution by using monocular depth and projecting pixels back into the 3D world.
We demonstrate results on the Tanks and Temples and Static Hikes datasets with as few as three widely-spaced views.
arXiv Detail & Related papers (2024-05-06T17:36:44Z) - GS2Mesh: Surface Reconstruction from Gaussian Splatting via Novel Stereo Views [9.175560202201819]
3D Gaussian Splatting (3DGS) has emerged as an efficient approach for accurately representing scenes.
We propose a novel approach for bridging the gap between the noisy 3DGS representation and the smooth 3D mesh representation.
We render stereo-aligned pairs of images corresponding to the original training poses, feed the pairs into a stereo model to get a depth profile, and finally fuse all of the profiles together to get a single mesh.
arXiv Detail & Related papers (2024-04-02T10:13:18Z) - latentSplat: Autoencoding Variational Gaussians for Fast Generalizable 3D Reconstruction [48.86083272054711]
latentSplat is a method to predict semantic Gaussians in a 3D latent space that can be splatted and decoded by a light-weight generative 2D architecture.
We show that latentSplat outperforms previous works in reconstruction quality and generalization, while being fast and scalable to high-resolution data.
arXiv Detail & Related papers (2024-03-24T20:48:36Z) - iComMa: Inverting 3D Gaussian Splatting for Camera Pose Estimation via Comparing and Matching [14.737266480464156]
We present a method named iComMa to address the 6D camera pose estimation problem in computer vision.
We propose an efficient method for accurate camera pose estimation by inverting 3D Gaussian Splatting (3DGS)
arXiv Detail & Related papers (2023-12-14T15:31:33Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
We present a new approach, termed GPS-Gaussian, for synthesizing novel views of a character in a real-time manner.
The proposed method enables 2K-resolution rendering under a sparse-view camera setting.
arXiv Detail & Related papers (2023-12-04T18:59:55Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - CheckerPose: Progressive Dense Keypoint Localization for Object Pose
Estimation with Graph Neural Network [66.24726878647543]
Estimating the 6-DoF pose of a rigid object from a single RGB image is a crucial yet challenging task.
Recent studies have shown the great potential of dense correspondence-based solutions.
We propose a novel pose estimation algorithm named CheckerPose, which improves on three main aspects.
arXiv Detail & Related papers (2023-03-29T17:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.