論文の概要: Postoperative glioblastoma segmentation: Development of a fully automated pipeline using deep convolutional neural networks and comparison with currently available models
- arxiv url: http://arxiv.org/abs/2404.11725v1
- Date: Wed, 17 Apr 2024 20:23:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 20:10:25.514517
- Title: Postoperative glioblastoma segmentation: Development of a fully automated pipeline using deep convolutional neural networks and comparison with currently available models
- Title(参考訳): 術後Glioblastoma segmentation: 深部畳み込みニューラルネットワークを用いた完全自動化パイプラインの開発と現在利用可能なモデルとの比較
- Authors: Santiago Cepeda, Roberto Romero, Daniel Garcia-Perez, Guillermo Blasco, Luigi Tommaso Luppino, Samuel Kuttner, Ignacio Arrese, Ole Solheim, Live Eikenes, Anna Karlberg, Angel Perez-Nunez, Trinidad Escudero, Roberto Hornero, Rosario Sarabia,
- Abstract要約: 術後画像の腫瘍部分領域と手術腔の分割にMRIスキャンとニューラルネットワークを用いたパイプラインを構築した。
本モデルは切除範囲を正確に分類し,治療効果を評価する上で有用なツールとして有用である。
- 参考スコア(独自算出の注目度): 1.1707435723107602
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately assessing tumor removal is paramount in the management of glioblastoma. We developed a pipeline using MRI scans and neural networks to segment tumor subregions and the surgical cavity in postoperative images. Our model excels in accurately classifying the extent of resection, offering a valuable tool for clinicians in assessing treatment effectiveness.
- Abstract(参考訳): グリオ芽腫では,腫瘍除去の正確な評価が最重要である。
術後画像の腫瘍部分領域と手術腔の分割にMRIスキャンとニューラルネットワークを用いたパイプラインを構築した。
本モデルは切除範囲を正確に分類し,治療効果を評価する上で有用なツールとして有用である。
関連論文リスト
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
クロスモーダル逆ニューラルレンダリングによる神経外科手術における術中3D/2Dレジストレーションのための新しいアプローチを提案する。
本手法では,暗黙の神経表現を2つの構成要素に分離し,術前および術中における解剖学的構造について検討した。
臨床症例の振り返りデータを用いて本法の有効性を検証し,現在の登録基準を満たした状態での最先端の検査成績を示した。
論文 参考訳(メタデータ) (2024-09-18T13:40:59Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマー層を組み合わせたハイブリッドネットワークを提案する。
プライベートおよびパブリックなDCE-MRIデータセットの実験結果から,提案したハイブリッドネットワークは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T15:46:00Z) - A novel method to compute the contact surface area between an organ and cancer tissue [81.84413479369512]
CSA(contact surface area)とは、腫瘍と臓器の間の接触領域のこと。
我々は,腫瘍と臓器の3次元再構成を頼りに,CSAの正確な客観的評価を行う革新的な方法を提案する。
論文 参考訳(メタデータ) (2024-01-19T14:34:34Z) - Segmentation-based Assessment of Tumor-Vessel Involvement for Surgical
Resectability Prediction of Pancreatic Ductal Adenocarcinoma [1.880228463170355]
膵管腺癌 (PDAC) は, 治療の選択肢が限られる進行癌である。
本研究は,腫瘍血管の関与を自動的に評価するワークフローと深層学習に基づくセグメンテーションモデルを提案する。
論文 参考訳(メタデータ) (2023-10-01T10:39:38Z) - The Rio Hortega University Hospital Glioblastoma dataset: a
comprehensive collection of preoperative, early postoperative and recurrence
MRI scans (RHUH-GBM) [0.0]
R'io Hortega University Hospital Glioblastoma dataset"は、多パラメータMRI画像、容積評価、分子データ、生存率の詳細の集合体である。
このデータセットは、専門家が修正した腫瘍サブリージョンのセグメンテーションを特徴とし、術後および術後のMRIスキャンのためのアルゴリズムを開発するための貴重な真実データを提供する。
論文 参考訳(メタデータ) (2023-04-27T13:10:55Z) - Segmentation of glioblastomas in early post-operative multi-modal MRI
with deep neural networks [33.51490233427579]
手術前セグメンテーションのための2つの最先端ニューラルネットワークアーキテクチャをトレーニングした。
最高の成績は61%のDiceスコアで、最高の分類性能は80%のバランスの取れた精度で達成された。
予測セグメンテーションは、患者を残存腫瘍と全切除患者に正確に分類するために用いられる。
論文 参考訳(メタデータ) (2023-04-18T10:14:45Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Dilated Inception U-Net (DIU-Net) for Brain Tumor Segmentation [0.9176056742068814]
U-Netに基づく新しいエンド・ツー・エンド脳腫瘍セグメンテーションアーキテクチャを提案する。
提案モデルでは, 腫瘍コアと全腫瘍セグメンテーションについて, 最先端のU-Netモデルよりも有意に優れた性能を示した。
論文 参考訳(メタデータ) (2021-08-15T16:04:09Z) - Expectation-Maximization Regularized Deep Learning for Weakly Supervised
Tumor Segmentation for Glioblastoma [8.24450401153384]
本研究では,弱監督腫瘍分割のためのEM正規化ディープラーニング(EMReDL)モデルを提案する。
この枠組みは周囲の脳組織への拡散浸潤を特徴とする悪性腫瘍の一種であるグリオ芽腫に特化していた。
論文 参考訳(メタデータ) (2021-01-21T18:14:43Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。