論文の概要: Learning with 3D rotations, a hitchhiker's guide to SO(3)
- arxiv url: http://arxiv.org/abs/2404.11735v2
- Date: Wed, 19 Jun 2024 10:17:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 04:18:42.178543
- Title: Learning with 3D rotations, a hitchhiker's guide to SO(3)
- Title(参考訳): ヒッチハイカーのSOへのガイドである3次元回転による学習(3)
- Authors: A. René Geist, Jonas Frey, Mikel Zobro, Anna Levina, Georg Martius,
- Abstract要約: 本論文は、回転表現によるサーベイおよびガイドとして機能する。
回転に基づく学習からの洞察を集約することにより、回転表現を用いた学習機能の包括的概要を提供する。
- 参考スコア(独自算出の注目度): 17.802455837461125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many settings in machine learning require the selection of a rotation representation. However, choosing a suitable representation from the many available options is challenging. This paper acts as a survey and guide through rotation representations. We walk through their properties that harm or benefit deep learning with gradient-based optimization. By consolidating insights from rotation-based learning, we provide a comprehensive overview of learning functions with rotation representations. We provide guidance on selecting representations based on whether rotations are in the model's input or output and whether the data primarily comprises small angles.
- Abstract(参考訳): 機械学習における多くの設定は回転表現の選択を必要とする。
しかし、利用可能な多くの選択肢から適切な表現を選択することは難しい。
本論文は、回転表現によるサーベイおよびガイドとして機能する。
勾配ベースの最適化でディープラーニングを損なう、あるいは利益をもたらす、彼らの特性を調べます。
回転に基づく学習からの洞察を集約することにより、回転表現を用いた学習機能の包括的概要を提供する。
モデルの入力や出力に回転があるか、データに主に小さな角度があるかに基づいて表現を選択するためのガイダンスを提供する。
関連論文リスト
- A Study of Forward-Forward Algorithm for Self-Supervised Learning [65.268245109828]
本研究では,自己指導型表現学習におけるフォワードとバックプロパゲーションのパフォーマンスについて検討する。
我々の主な発見は、フォワードフォワードアルゴリズムが(自己教師付き)トレーニング中にバックプロパゲーションに相容れないように機能するのに対し、転送性能は研究されたすべての設定において著しく遅れていることである。
論文 参考訳(メタデータ) (2023-09-21T10:14:53Z) - Rotation-Invariant Random Features Provide a Strong Baseline for Machine
Learning on 3D Point Clouds [10.166033101890227]
三次元点雲データの回転不変関数を簡易かつ汎用的に学習する手法を提案する。
我々は,本手法が汎用回転不変ニューラルネットワークの性能に適合し,性能に優れることを示す。
論文 参考訳(メタデータ) (2023-07-27T20:18:11Z) - Evaluating 3D Shape Analysis Methods for Robustness to Rotation
Invariance [22.306775502181818]
本稿では,最近の3次元形状記述子のSO(3)回転に対する堅牢性について解析する。
物体が異なる方向で行われる3次元屋内シーンのデータベースを考察する。
論文 参考訳(メタデータ) (2023-05-29T18:39:31Z) - CRIN: Rotation-Invariant Point Cloud Analysis and Rotation Estimation
via Centrifugal Reference Frame [60.24797081117877]
CRIN,すなわち遠心回転不変ネットワークを提案する。
CRINは点の座標を直接入力として取り、局所点を回転不変表現に変換する。
点に基づく3次元回転の連続分布を導入する。
論文 参考訳(メタデータ) (2023-03-06T13:14:10Z) - Category-Level 6D Object Pose Estimation with Flexible Vector-Based
Rotation Representation [51.67545893892129]
モノクロRGB-D画像からカテゴリレベルの6次元ポーズとサイズ推定のための新しい3次元グラフ畳み込みに基づくパイプラインを提案する。
まず,3次元グラフ畳み込みを用いた向き対応オートエンコーダの設計を行った。
そして, 回転情報を潜在特徴から効率的に復号化するために, フレキシブルなベクトルベースデコンポーザブルな回転表現を設計する。
論文 参考訳(メタデータ) (2022-12-09T02:13:43Z) - SPE-Net: Boosting Point Cloud Analysis via Rotation Robustness
Enhancement [118.20816888815658]
SPE-Netという名前の3Dポイントクラウドアプリケーションに適した新しいディープアーキテクチャを提案する。
埋め込みSelective Position variant' の手順は、入力の根底にある回転条件に効果的に対応できる注意機構に依存している。
SPE-Netと関連する仮説の利点を4つのベンチマークで示し、SOTA法よりも回転試験データと回転試験データの両方に明らかな改善点を示した。
論文 参考訳(メタデータ) (2022-11-15T15:59:09Z) - ART-Point: Improving Rotation Robustness of Point Cloud Classifiers via
Adversarial Rotation [89.47574181669903]
本研究では, 点雲分類器の回転ロバスト性も, 対角訓練により得られることを示す。
具体的には、ART-Pointというフレームワークは、ポイントクラウドの回転を攻撃と見なしている。
最終的なロバストモデルに効率よく到達するために,高速なワンステップ最適化を提案する。
論文 参考訳(メタデータ) (2022-03-08T07:20:16Z) - Adjoint Rigid Transform Network: Task-conditioned Alignment of 3D Shapes [86.2129580231191]
Adjoint Rigid Transform (ART) Networkは、さまざまな3Dネットワークと統合可能なニューラルネットワークモジュールである。
ARTは入力の形状を学習した標準方向に回転させることを学び、多くのタスクに欠かせない。
さらなる研究のために、コードと事前訓練されたモデルをリリースします。
論文 参考訳(メタデータ) (2021-02-01T20:58:45Z) - Learning to Orient Surfaces by Self-supervised Spherical CNNs [15.554429755106332]
3D表面の標準配向の定義と確実な発見は、多くのコンピュータビジョンとロボティクスアプリケーションにとって鍵となる。
点雲として表される曲面に対する頑健な正準方向の学習の実現可能性を示す。
提案手法は, 自己教師付き訓練手順により生データからこのような特徴マップを学習し, 入力点雲を学習正準方向に変換する回転を頑健に選択する。
論文 参考訳(メタデータ) (2020-11-06T11:43:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。