REQUAL-LM: Reliability and Equity through Aggregation in Large Language Models
- URL: http://arxiv.org/abs/2404.11782v1
- Date: Wed, 17 Apr 2024 22:12:41 GMT
- Title: REQUAL-LM: Reliability and Equity through Aggregation in Large Language Models
- Authors: Sana Ebrahimi, Nima Shahbazi, Abolfazl Asudeh,
- Abstract summary: We introduce REQUAL-LM, a novel method for finding reliable and equitable large language models (LLMs) outputs through aggregation.
Specifically, we develop a Monte Carlo method based on repeated sampling to find a reliable output close to the mean of the underlying distribution of possible outputs.
We formally define the terms such as reliability and bias, and design an equity-aware aggregation to minimize harmful bias while finding a highly reliable output.
- Score: 10.684722193666607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The extensive scope of large language models (LLMs) across various domains underscores the critical importance of responsibility in their application, beyond natural language processing. In particular, the randomized nature of LLMs, coupled with inherent biases and historical stereotypes in data, raises critical concerns regarding reliability and equity. Addressing these challenges are necessary before using LLMs for applications with societal impact. Towards addressing this gap, we introduce REQUAL-LM, a novel method for finding reliable and equitable LLM outputs through aggregation. Specifically, we develop a Monte Carlo method based on repeated sampling to find a reliable output close to the mean of the underlying distribution of possible outputs. We formally define the terms such as reliability and bias, and design an equity-aware aggregation to minimize harmful bias while finding a highly reliable output. REQUAL-LM does not require specialized hardware, does not impose a significant computing load, and uses LLMs as a blackbox. This design choice enables seamless scalability alongside the rapid advancement of LLM technologies. Our system does not require retraining the LLMs, which makes it deployment ready and easy to adapt. Our comprehensive experiments using various tasks and datasets demonstrate that REQUAL- LM effectively mitigates bias and selects a more equitable response, specifically the outputs that properly represents minority groups.
Related papers
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - $\forall$uto$\exists$val: Autonomous Assessment of LLMs in Formal Synthesis and Interpretation Tasks [21.12437562185667]
This paper presents a new approach for scaling LLM assessment in translating formal syntax to natural language.
We use context-free grammars (CFGs) to generate out-of-distribution datasets on the fly.
We also conduct an assessment of several SOTA closed and open-source LLMs to showcase the feasibility and scalability of this paradigm.
arXiv Detail & Related papers (2024-03-27T08:08:00Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
Large language models (LLMs) have been treated as knowledge bases due to their strong performance in knowledge probing tasks.
How do we evaluate the capabilities of LLMs to consistently produce factually correct answers?
We propose MOdel kNowledge relIabiliTy scORe (MONITOR), a novel metric designed to directly measure LLMs' factual reliability.
arXiv Detail & Related papers (2023-10-15T12:40:30Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
This survey addresses the crucial issue of factuality in Large Language Models (LLMs)
As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital.
arXiv Detail & Related papers (2023-10-11T14:18:03Z) - Small Language Models Improve Giants by Rewriting Their Outputs [18.025736098795296]
We tackle the problem of leveraging training data to improve the performance of large language models (LLMs) without fine-tuning.
We create a pool of candidates from the LLM through few-shot prompting and we employ a compact model, the LM-corrector (LMCor), specifically trained to merge these candidates to produce an enhanced output.
Experiments on four natural language generation tasks demonstrate that even a small LMCor model (250M) substantially improves the few-shot performance of LLMs (62B), matching and even outperforming standard fine-tuning.
arXiv Detail & Related papers (2023-05-22T22:07:50Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z) - Large Language Model Is Not a Good Few-shot Information Extractor, but a
Good Reranker for Hard Samples! [43.51393135075126]
Large Language Models (LLMs) have made remarkable strides in various tasks.
We show that current advanced LLMs consistently exhibit inferior performance, higher latency, and increased budget requirements compared to fine-tuned SLMs.
We propose an adaptive filter-then-rerank paradigm to combine the strengths of LLMs and SLMs.
arXiv Detail & Related papers (2023-03-15T12:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.