LLM4VV: Evaluating Cutting-Edge LLMs for Generation and Evaluation of Directive-Based Parallel Programming Model Compiler Tests
- URL: http://arxiv.org/abs/2507.21447v1
- Date: Tue, 29 Jul 2025 02:34:28 GMT
- Title: LLM4VV: Evaluating Cutting-Edge LLMs for Generation and Evaluation of Directive-Based Parallel Programming Model Compiler Tests
- Authors: Zachariah Sollenberger, Rahul Patel, Saieda Ali Zada, Sunita Chandrasekaran,
- Abstract summary: This paper proposes a dual-LLM system and experiments with the usage of LLMs for the generation of compiler tests.<n>It is evident that LLMs possess the promising potential to generate quality compiler tests and verify them automatically.
- Score: 7.6818904666624395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The usage of Large Language Models (LLMs) for software and test development has continued to increase since LLMs were first introduced, but only recently have the expectations of LLMs become more realistic. Verifying the correctness of code generated by LLMs is key to improving their usefulness, but there have been no comprehensive and fully autonomous solutions developed yet. Hallucinations are a major concern when LLMs are applied blindly to problems without taking the time and effort to verify their outputs, and an inability to explain the logical reasoning of LLMs leads to issues with trusting their results. To address these challenges while also aiming to effectively apply LLMs, this paper proposes a dual-LLM system (i.e. a generative LLM and a discriminative LLM) and experiments with the usage of LLMs for the generation of a large volume of compiler tests. We experimented with a number of LLMs possessing varying parameter counts and presented results using ten carefully-chosen metrics that we describe in detail in our narrative. Through our findings, it is evident that LLMs possess the promising potential to generate quality compiler tests and verify them automatically.
Related papers
- Lightweight Latent Verifiers for Efficient Meta-Generation Strategies [0.5892638927736115]
Verifiers are auxiliary models that assess the correctness of outputs generated by base large language models (LLMs)<n>In this work, we introduce a novel lightweight verification approach, LiLaVe, which reliably extracts correctness signals from the hidden states of the base LLM.<n>A key advantage of LiLaVe is its ability to operate with only a small fraction of the computational budget required by traditional LLM-based verifiers.
arXiv Detail & Related papers (2025-04-23T14:33:20Z) - LLM4VV: Exploring LLM-as-a-Judge for Validation and Verification Testsuites [6.796136787585992]
Large Language Models (LLM) are evolving and have significantly revolutionized the landscape of software development.
This paper explores the idea of judging tests used to evaluate compiler implementations of directive-based programming models.
arXiv Detail & Related papers (2024-08-21T15:54:17Z) - Improving the Ability of Pre-trained Language Model by Imparting Large Language Model's Experience [4.814313782484443]
Large Language Models (LLMs) and pre-trained Language Models (LMs) have achieved impressive success on many software engineering tasks.<n>We use LLMs to generate domain-specific data, thereby improving the performance of pre-trained LMs on the target tasks.
arXiv Detail & Related papers (2024-08-16T06:37:59Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
We introduce AlphaLLM for the self-improvements of Large Language Models.<n>It integrates Monte Carlo Tree Search (MCTS) with LLMs to establish a self-improving loop.<n>Our experimental results show that AlphaLLM significantly enhances the performance of LLMs without additional annotations.
arXiv Detail & Related papers (2024-04-18T15:21:34Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - A Survey of Large Language Models for Code: Evolution, Benchmarking, and
Future Trends [30.774685501251817]
General large language models (LLMs) have demonstrated significant potential in tasks such as code generation in software engineering.
A considerable portion of Code LLMs is derived from general LLMs through model fine-tuning.
There is currently a lack of systematic investigation into Code LLMs and their performance.
arXiv Detail & Related papers (2023-11-17T07:55:16Z) - LLatrieval: LLM-Verified Retrieval for Verifiable Generation [67.93134176912477]
Verifiable generation aims to let the large language model (LLM) generate text with supporting documents.
We propose LLatrieval (Large Language Model Verified Retrieval), where the LLM updates the retrieval result until it verifies that the retrieved documents can sufficiently support answering the question.
Experiments show that LLatrieval significantly outperforms extensive baselines and achieves state-of-the-art results.
arXiv Detail & Related papers (2023-11-14T01:38:02Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
Large language models (LLMs) have been treated as knowledge bases due to their strong performance in knowledge probing tasks.
How do we evaluate the capabilities of LLMs to consistently produce factually correct answers?
We propose MOdel kNowledge relIabiliTy scORe (MONITOR), a novel metric designed to directly measure LLMs' factual reliability.
arXiv Detail & Related papers (2023-10-15T12:40:30Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
This survey addresses the crucial issue of factuality in Large Language Models (LLMs)
As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital.
arXiv Detail & Related papers (2023-10-11T14:18:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.