Establishing a Baseline for Gaze-driven Authentication Performance in VR: A Breadth-First Investigation on a Very Large Dataset
- URL: http://arxiv.org/abs/2404.11798v2
- Date: Fri, 12 Jul 2024 01:05:17 GMT
- Title: Establishing a Baseline for Gaze-driven Authentication Performance in VR: A Breadth-First Investigation on a Very Large Dataset
- Authors: Dillon Lohr, Michael J. Proulx, Oleg Komogortsev,
- Abstract summary: This paper establishes a baseline for gaze-driven authentication performance using a very large dataset of gaze recordings from 9202 people.
Our major findings indicate that gaze authentication can be as accurate as required by the FIDO standard when driven by a state-of-the-art machine learning architecture and a sufficiently large training dataset.
- Score: 10.645578300818498
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper performs the crucial work of establishing a baseline for gaze-driven authentication performance to begin answering fundamental research questions using a very large dataset of gaze recordings from 9202 people with a level of eye tracking (ET) signal quality equivalent to modern consumer-facing virtual reality (VR) platforms. The size of the employed dataset is at least an order-of-magnitude larger than any other dataset from previous related work. Binocular estimates of the optical and visual axes of the eyes and a minimum duration for enrollment and verification are required for our model to achieve a false rejection rate (FRR) of below 3% at a false acceptance rate (FAR) of 1 in 50,000. In terms of identification accuracy which decreases with gallery size, we estimate that our model would fall below chance-level accuracy for gallery sizes of 148,000 or more. Our major findings indicate that gaze authentication can be as accurate as required by the FIDO standard when driven by a state-of-the-art machine learning architecture and a sufficiently large training dataset.
Related papers
- HyperspectralViTs: General Hyperspectral Models for On-board Remote Sensing [21.192836739734435]
On-board processing of hyperspectral data with machine learning models would enable unprecedented amount of autonomy for a wide range of tasks.
This can enable early warning system and could allow new capabilities such as automated scheduling across constellations of satellites.
We propose fast and accurate machine learning architectures which support end-to-end training with data of high spectral dimension.
arXiv Detail & Related papers (2024-10-22T17:59:55Z) - CLIPping the Deception: Adapting Vision-Language Models for Universal
Deepfake Detection [3.849401956130233]
We explore the effectiveness of pre-trained vision-language models (VLMs) when paired with recent adaptation methods for universal deepfake detection.
We employ only a single dataset (ProGAN) in order to adapt CLIP for deepfake detection.
The simple and lightweight Prompt Tuning based adaptation strategy outperforms the previous SOTA approach by 5.01% mAP and 6.61% accuracy.
arXiv Detail & Related papers (2024-02-20T11:26:42Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - From Blurry to Brilliant Detection: YOLOv5-Based Aerial Object Detection
with Super Resolution [4.107182710549721]
We present an innovative approach that combines super-resolution and an adapted lightweight YOLOv5 architecture.
Our experimental results demonstrate the model's superior performance in detecting small and densely clustered objects.
arXiv Detail & Related papers (2024-01-26T05:50:58Z) - One-Shot Learning for Periocular Recognition: Exploring the Effect of
Domain Adaptation and Data Bias on Deep Representations [59.17685450892182]
We investigate the behavior of deep representations in widely used CNN models under extreme data scarcity for One-Shot periocular recognition.
We improved state-of-the-art results that made use of networks trained with biometric datasets with millions of images.
Traditional algorithms like SIFT can outperform CNNs in situations with limited data.
arXiv Detail & Related papers (2023-07-11T09:10:16Z) - One Eye is All You Need: Lightweight Ensembles for Gaze Estimation with
Single Encoders [0.0]
We propose a gaze estimation model that implements the ResNet and Inception model architectures and makes predictions using only one eye image.
With the use of lightweight architectures, we achieve high performance on the GazeCapture dataset with very low model parameter counts.
We also notice significantly lower errors on the right eye images in the test set, which could be important in the design of future gaze estimation-based tools.
arXiv Detail & Related papers (2022-11-22T01:12:31Z) - Gait Recognition in the Wild: A Large-scale Benchmark and NAS-based
Baseline [95.88825497452716]
Gait benchmarks empower the research community to train and evaluate high-performance gait recognition systems.
GREW is the first large-scale dataset for gait recognition in the wild.
SPOSGait is the first NAS-based gait recognition model.
arXiv Detail & Related papers (2022-05-05T14:57:39Z) - ORBIT: A Real-World Few-Shot Dataset for Teachable Object Recognition [21.594641488685376]
We present the ORBIT dataset and benchmark, grounded in a real-world application of teachable object recognizers for people who are blind/low vision.
The dataset contains 3,822 videos of 486 objects recorded by people who are blind/low-vision on their mobile phones.
The benchmark reflects a realistic, highly challenging recognition problem, providing a rich playground to drive research in robustness to few-shot, high-variation conditions.
arXiv Detail & Related papers (2021-04-08T15:32:01Z) - ETH-XGaze: A Large Scale Dataset for Gaze Estimation under Extreme Head
Pose and Gaze Variation [52.5465548207648]
ETH-XGaze is a new gaze estimation dataset consisting of over one million high-resolution images of varying gaze under extreme head poses.
We show that our dataset can significantly improve the robustness of gaze estimation methods across different head poses and gaze angles.
arXiv Detail & Related papers (2020-07-31T04:15:53Z) - Towards End-to-end Video-based Eye-Tracking [50.0630362419371]
Estimating eye-gaze from images alone is a challenging task due to un-observable person-specific factors.
We propose a novel dataset and accompanying method which aims to explicitly learn these semantic and temporal relationships.
We demonstrate that the fusion of information from visual stimuli as well as eye images can lead towards achieving performance similar to literature-reported figures.
arXiv Detail & Related papers (2020-07-26T12:39:15Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.