論文の概要: Partial Large Kernel CNNs for Efficient Super-Resolution
- arxiv url: http://arxiv.org/abs/2404.11848v1
- Date: Thu, 18 Apr 2024 01:55:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 13:20:47.860619
- Title: Partial Large Kernel CNNs for Efficient Super-Resolution
- Title(参考訳): 超解像能率のための部分大カーネルCNN
- Authors: Dongheon Lee, Seokju Yun, Youngmin Ro,
- Abstract要約: 超解法(PLKSR)のためのPartial Large Kernel CNNを導入する。
PLKSRは、待ち時間68.1%、最大GPUメモリ占有率80.2%の削減を実現している。
- 参考スコア(独自算出の注目度): 6.8410780175245165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, in the super-resolution (SR) domain, transformers have outperformed CNNs with fewer FLOPs and fewer parameters since they can deal with long-range dependency and adaptively adjust weights based on instance. In this paper, we demonstrate that CNNs, although less focused on in the current SR domain, surpass Transformers in direct efficiency measures. By incorporating the advantages of Transformers into CNNs, we aim to achieve both computational efficiency and enhanced performance. However, using a large kernel in the SR domain, which mainly processes large images, incurs a large computational overhead. To overcome this, we propose novel approaches to employing the large kernel, which can reduce latency by 86\% compared to the naive large kernel, and leverage an Element-wise Attention module to imitate instance-dependent weights. As a result, we introduce Partial Large Kernel CNNs for Efficient Super-Resolution (PLKSR), which achieves state-of-the-art performance on four datasets at a scale of $\times$4, with reductions of 68.1\% in latency and 80.2\% in maximum GPU memory occupancy compared to SRFormer-light.
- Abstract(参考訳): 近年、超高分解能(SR)領域において、変圧器は長距離依存に対処し、例えば重みを適応的に調整できるため、FLOPが少なく、パラメータも少ないCNNよりも優れています。
本稿では,現在のSR領域では注目されていないCNNが,直接効率測定においてトランスフォーマーを上回っていることを示す。
トランスフォーマーの利点をCNNに組み込むことで,計算効率と性能向上の両立を図っている。
しかし、大きなイメージを主に処理するSRドメインで大きなカーネルを使用すると、大きな計算オーバーヘッドが発生する。
そこで,本研究では,大規模カーネルのレイテンシを86%削減し,インスタンス依存の重みを模倣するElement-wise Attentionモジュールを活用する,大規模カーネルの新たなアプローチを提案する。
その結果、PLKSR(Partial Large Kernel CNNs for Efficient Super-Resolution)を導入し、SRFormer-lightと比較して、レイテンシが68.1\%、最大GPUメモリ占有率が80.2\%の4つのデータセットで、最先端のパフォーマンスを実現した。
関連論文リスト
- LSK3DNet: Towards Effective and Efficient 3D Perception with Large Sparse Kernels [62.31333169413391]
大型スパースカーネル3次元ニューラルネットワーク(LSK3DNet)
提案手法は,SDS (Spatial-wise Dynamic Sparsity) とCWS (Channel-wise Weight Selection) の2成分からなる。
論文 参考訳(メタデータ) (2024-03-22T12:54:33Z) - PeLK: Parameter-efficient Large Kernel ConvNets with Peripheral Convolution [35.1473732030645]
人間の視覚に触発されて、高密度グリッド畳み込みの90%以上のパラメータ数を効率的に削減する、ヒトのような周辺畳み込みを提案する。
末梢のコンボリューションは人間と非常によく似ており,O(K2) から O(logK) へのコンボリューションの複雑度を低下させる。
初めて、CNNのカーネルサイズを前例のない101x101にスケールアップし、一貫した改善を実証しました。
論文 参考訳(メタデータ) (2024-03-12T12:19:05Z) - Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
本稿では, Convolutional Transformer Layer (ConvFormer) を導入し, ConvFormer-based Super-Resolution Network (CFSR) を提案する。
CFSRは畳み込みベースのアプローチとトランスフォーマーベースのアプローチの両方の利点を継承する。
CFSRは計算コストと性能のバランスが最適であることを示す実験である。
論文 参考訳(メタデータ) (2024-01-11T03:08:00Z) - Incorporating Transformer Designs into Convolutions for Lightweight
Image Super-Resolution [46.32359056424278]
大規模な畳み込みカーネルは畳み込みニューラルネットワークの設計に人気がある。
カーネルのサイズが大きくなるとパラメータの数が2倍に増加し、計算量やメモリの要求も大きくなる。
本稿では,自己注意機構を付加した標準畳み込みを改良した近傍注意モジュールを提案する。
NAモジュールをベースとして,TSRと呼ばれる軽量単一画像超解像(SISR)ネットワークを提案する。
論文 参考訳(メタデータ) (2023-03-25T01:32:18Z) - SCONNA: A Stochastic Computing Based Optical Accelerator for Ultra-Fast,
Energy-Efficient Inference of Integer-Quantized CNNs [0.0]
CNN推論タスクは、一般的にベクトルドット生成(VDP)操作に変換される畳み込み演算を使用する。
いくつかのフォトニックマイクロリング共振器(MRR)ベースのハードウェアアーキテクチャが整数量子化CNNを高速化するために提案されている。
既存のフォトニックMRRベースのアナログ加速器は、達成可能な入力/重み付け精度とVDP操作サイズとの間に非常に強いトレードオフを示す。
論文 参考訳(メタデータ) (2023-02-14T13:35:15Z) - RTFormer: Efficient Design for Real-Time Semantic Segmentation with
Transformer [63.25665813125223]
本稿では,リアルタイムセマンティックセグメンテーションのための効率的なデュアルレゾリューション変換器RTFormerを提案する。
CNNベースのモデルよりもパフォーマンスと効率のトレードオフが優れている。
主要なベンチマーク実験では,提案したRTFormerの有効性を示す。
論文 参考訳(メタデータ) (2022-10-13T16:03:53Z) - More ConvNets in the 2020s: Scaling up Kernels Beyond 51x51 using
Sparsity [103.62784587778037]
最近、いくつかの先進的な畳み込みモデルが、局所的だが大きな注意機構によって動機付けられた大きなカーネルで後退している。
本稿では,51x51カーネルを備えた純粋なCNNアーキテクチャであるSparse Large Kernel Network (SLaK)を提案する。
論文 参考訳(メタデータ) (2022-07-07T23:55:52Z) - Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs [148.0476219278875]
現代畳み込みニューラルネットワーク(CNN)における大規模カーネル設計の再検討
本稿では、視覚変換器(ViT)の最近の進歩に触発されて、小さなカーネルのスタックではなく、少数の大きな畳み込みカーネルを使うことが、より強力なパラダイムであることを実証する。
本稿では,カーネルサイズが31x31の純粋なCNNアーキテクチャであるRepLKNetを提案する。
論文 参考訳(メタデータ) (2022-03-13T17:22:44Z) - Container: Context Aggregation Network [83.12004501984043]
最近の発見は、従来の畳み込みやトランスフォーマーコンポーネントを使わずに、シンプルなベースのソリューションが効果的な視覚表現を生成できることを示している。
マルチヘッドコンテキストアグリゲーションのための汎用ビルディングブロックCONText Ion NERtwokを提案する。
より大規模な入力画像解像度に依存する下流タスクにはスケールしないTransformerベースの手法とは対照的に、当社の効率的なネットワークであるModellightは、オブジェクト検出やインスタンスセグメンテーションネットワークに利用することができる。
論文 参考訳(メタデータ) (2021-06-02T18:09:11Z) - PENNI: Pruned Kernel Sharing for Efficient CNN Inference [41.050335599000036]
最先端(SOTA)CNNは、様々なタスクにおいて優れたパフォーマンスを達成する。
その高い計算要求と膨大な数のパラメータにより、リソース制約のあるデバイスにこれらのSOTA CNNをデプロイすることは困難である。
本稿では,CNNモデル圧縮フレームワークであるPENNIを提案する。
論文 参考訳(メタデータ) (2020-05-14T16:57:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。