Progressive Multi-modal Conditional Prompt Tuning
- URL: http://arxiv.org/abs/2404.11864v2
- Date: Wed, 24 Apr 2024 12:36:10 GMT
- Title: Progressive Multi-modal Conditional Prompt Tuning
- Authors: Xiaoyu Qiu, Hao Feng, Yuechen Wang, Wengang Zhou, Houqiang Li,
- Abstract summary: Pre-trained vision-language models (VLMs) have shown remarkable generalization capabilities via prompting.
We propose a novel method, Progressive Multi-modal conditional Prompt Tuning (ProMPT)
ProMPT exploits a recurrent structure, optimizing and aligning V-L features by iteratively utilizing image and current encoding information.
- Score: 92.50645776024624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-trained vision-language models (VLMs) have shown remarkable generalization capabilities via prompting, which leverages VLMs as knowledge bases to extract information beneficial for downstream tasks. However, existing methods primarily employ uni-modal prompting, which only engages a uni-modal branch, failing to simultaneously adjust vision-language (V-L) features. Additionally, the one-pass forward pipeline in VLM encoding struggles to align V-L features that have a huge gap. Confronting these challenges, we propose a novel method, Progressive Multi-modal conditional Prompt Tuning (ProMPT). ProMPT exploits a recurrent structure, optimizing and aligning V-L features by iteratively utilizing image and current encoding information. It comprises an initialization and a multi-modal iterative evolution (MIE) module. Initialization is responsible for encoding images and text using a VLM, followed by a feature filter that selects text features similar to image. MIE then facilitates multi-modal prompting through class-conditional vision prompting, instance-conditional text prompting, and feature filtering. In each MIE iteration, vision prompts are obtained from filtered text features via a vision generator, promoting image features to focus more on target object during vision prompting. The encoded image features are fed into a text generator to produce text prompts that are more robust to class shifts. Thus, V-L features are progressively aligned, enabling advance from coarse to exact prediction. Extensive experiments are conducted in three settings to evaluate the efficacy of ProMPT. The results indicate that ProMPT outperforms existing methods on average across all settings, demonstrating its superior generalization and robustness. Code is available at https://github.com/qiuxiaoyu9954/ProMPT.
Related papers
- PIP-MM: Pre-Integrating Prompt Information into Visual Encoding via Existing MLLM Structures [5.513631883813244]
We propose a framework that textbfPre-textbfIntegratestextbfPrompt information into the visual encoding process using existingmodules of MLLMs.
Our model maintains excellent generation even when half of the visual tokens are reduced.
arXiv Detail & Related papers (2024-10-30T15:05:17Z) - Attention Prompting on Image for Large Vision-Language Models [63.794304207664176]
We propose a new prompting technique named Attention Prompting on Image.
We generate an attention heatmap for the input image dependent on the text query with an auxiliary model like CLIP.
Experiments on various vison-language benchmarks verify the effectiveness of our technique.
arXiv Detail & Related papers (2024-09-25T17:59:13Z) - Instruction Tuning-free Visual Token Complement for Multimodal LLMs [51.138806401996696]
multimodal large language models (MLLMs) have promised an elegant bridge between vision and language.
We propose a Visual Token Complement framework (VTC) that helps MLLMs regain the missing visual features.
Our VTC integrates text-to-image generation as a guide to identifying the text-irrelevant features, and a visual selector is then developed to generate complementary visual tokens.
arXiv Detail & Related papers (2024-08-09T12:13:01Z) - LVLM-empowered Multi-modal Representation Learning for Visual Place Recognition [17.388776062997813]
We try to build a discriminative global representations by fusing image data and text descriptions of the the visual scene.
The motivation is twofold: (1) Current Large Vision-Language Models (LVLMs) demonstrate extraordinary emergent capability in visual instruction following, and thus provide an efficient and flexible manner in generating text descriptions of images.
Although promising, leveraging LVLMs to build multi-modal VPR solutions remains challenging in efficient multi-modal fusion.
arXiv Detail & Related papers (2024-07-09T10:15:31Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
We introduce the Draw-and-Understand project: a new model, a multi-domain dataset, and a challenging benchmark for visual prompting.
Specifically, we propose a new end-to-end trained Multimodal Large Language Model (MLLM) that connects a vision encoder, a visual prompt encoder and an LLM.
To advance visual prompting research for MLLMs, we introduce MDVP-Data and MDVP-Bench.
arXiv Detail & Related papers (2024-03-29T16:26:20Z) - Aligned with LLM: a new multi-modal training paradigm for encoding fMRI
activity in visual cortex [4.57590454144072]
Recently, there has been a surge in the popularity of pre trained large language models (LLMs)
This paper proposes a new multi-modal training paradigm, aligning with LLM, encoding fMRI activity in visual cortex.
arXiv Detail & Related papers (2024-01-08T12:30:23Z) - VL-GPT: A Generative Pre-trained Transformer for Vision and Language
Understanding and Generation [79.02357561313785]
We introduce Vision-Language Generative Pre-trained Transformer (VL-GPT), a transformer model proficient at concurrently perceiving and generating visual and linguistic data.
VL-GPT achieves a unified pre-training approach for both image and text modalities by employing a straightforward auto-regressive objective.
arXiv Detail & Related papers (2023-12-14T18:59:43Z) - Adapting Pre-trained Language Models to Vision-Language Tasks via
Dynamic Visual Prompting [83.21164539349273]
Pre-trained language models (PLMs) have played an increasing role in multimedia research.
In this paper, we focus on exploring PLMs as a stand-alone model for vision-language reasoning tasks.
We propose a novel transfer learning approach for PLMs, termed Dynamic Visual Prompting (DVP)
arXiv Detail & Related papers (2023-06-01T07:19:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.