Semantic-Clipping: Efficient Vision-Language Modeling with Semantic-Guidedd Visual Selection
- URL: http://arxiv.org/abs/2503.11794v1
- Date: Fri, 14 Mar 2025 18:33:31 GMT
- Title: Semantic-Clipping: Efficient Vision-Language Modeling with Semantic-Guidedd Visual Selection
- Authors: Bangzheng Li, Fei Wang, Wenxuan Zhou, Nan Xu, Ben Zhou, Sheng Zhang, Hoifung Poon, Muhao Chen,
- Abstract summary: Vision-Language Models (VLMs) leverage aligned visual encoders to transform images into visual tokens, allowing them to be processed similarly to text by the backbone large language model (LLM)<n>Recent advancements in vision-language modeling introduce image cropping techniques that feed all encoded sub-images into the model.<n>We propose a lightweight, universal framework that seamlessly integrates with existing VLMs to enhance their ability to process finegrained details.
- Score: 53.558449071113245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-Language Models (VLMs) leverage aligned visual encoders to transform images into visual tokens, allowing them to be processed similarly to text by the backbone large language model (LLM). This unified input paradigm enables VLMs to excel in vision-language tasks such as visual question answering (VQA). To improve fine-grained visual reasoning, recent advancements in vision-language modeling introduce image cropping techniques that feed all encoded sub-images into the model. However, this approach significantly increases the number of visual tokens, leading to inefficiency and potential distractions for the LLM. To address the generalization challenges of image representation in VLMs, we propose a lightweight, universal framework that seamlessly integrates with existing VLMs to enhance their ability to process finegrained details. Our method leverages textual semantics to identify key visual areas, improving VQA performance without requiring any retraining of the VLM. Additionally, it incorporates textual signals into the visual encoding process, enhancing both efficiency and effectiveness. The proposed method, SEMCLIP, strengthens the visual understanding of a 7B VLM, LLaVA-1.5 by 3.3% on average across 7 benchmarks, and particularly by 5.3% on the challenging detailed understanding benchmark V*.
Related papers
- Lifting the Veil on Visual Information Flow in MLLMs: Unlocking Pathways to Faster Inference [28.24397677839652]
Multimodal large language models (MLLMs) improve performance on vision-language tasks by integrating visual features from pre-trained vision encoders into large language models.
How MLLMs process and utilize visual information remains unclear.
We propose Hierarchical Modality-Aware Pruning (HiMAP), a plug-and-play inference acceleration method that dynamically prunes image tokens at specific layers, reducing computational costs by approximately 65% without sacrificing performance.
arXiv Detail & Related papers (2025-03-17T12:31:23Z) - Symmetrical Visual Contrastive Optimization: Aligning Vision-Language Models with Minimal Contrastive Images [7.823336661261962]
Large Vision-Language Models (VLMs) tend to neglect image content and over-rely on language-model priors.<n>We propose S-VCO (Symmetrical Visual Contrastive Optimization), a novel finetuning objective that steers the model toward capturing important visual details.
arXiv Detail & Related papers (2025-02-19T18:05:42Z) - Probing Visual Language Priors in VLMs [51.016683265437536]
We introduce ViLP, a benchmark featuring deliberately out-of-distribution images.<n>Each question in ViLP is coupled with three potential answers and three corresponding images.<n>We propose a self-improving framework in which models generate new VQA data, then apply pixel-level and semantic corruptions to form "good-bad" image pairs for self-training.
arXiv Detail & Related papers (2024-12-31T17:54:29Z) - Attention Prompting on Image for Large Vision-Language Models [63.794304207664176]
We propose a new prompting technique named Attention Prompting on Image.
We generate an attention heatmap for the input image dependent on the text query with an auxiliary model like CLIP.
Experiments on various vison-language benchmarks verify the effectiveness of our technique.
arXiv Detail & Related papers (2024-09-25T17:59:13Z) - Instruction Tuning-free Visual Token Complement for Multimodal LLMs [51.138806401996696]
multimodal large language models (MLLMs) have promised an elegant bridge between vision and language.
We propose a Visual Token Complement framework (VTC) that helps MLLMs regain the missing visual features.
Our VTC integrates text-to-image generation as a guide to identifying the text-irrelevant features, and a visual selector is then developed to generate complementary visual tokens.
arXiv Detail & Related papers (2024-08-09T12:13:01Z) - Towards Semantic Equivalence of Tokenization in Multimodal LLM [149.11720372278273]
Vision tokenization is essential for semantic alignment between vision and language.
This paper proposes a novel dynamic Semantic-Equivalent Vision Tokenizer (SeTok)
SeTok groups visual features into semantic units via a dynamic clustering algorithm.
The resulting vision tokens effectively preserve semantic integrity and capture both low-frequency and high-frequency visual features.
arXiv Detail & Related papers (2024-06-07T17:55:43Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Finer: Investigating and Enhancing Fine-Grained Visual Concept Recognition in Large Vision Language Models [57.95366341738857]
In-depth analyses show that instruction-tuned LVLMs exhibit modality gap, showing discrepancy when given textual and visual inputs that correspond to the same concept.
We propose a multiple attribute-centric evaluation benchmark, Finer, to evaluate LVLMs' fine-grained visual comprehension ability and provide significantly improved explainability.
arXiv Detail & Related papers (2024-02-26T05:43:51Z) - VLMAE: Vision-Language Masked Autoencoder [21.97700040013084]
We propose a vision-language masked autoencoder framework (VLMAE) for vision-language pre-training.
VLMAE employs visual generative learning, facilitating the model to acquire fine-grained and unbiased features.
arXiv Detail & Related papers (2022-08-19T14:39:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.