The Dog Walking Theory: Rethinking Convergence in Federated Learning
- URL: http://arxiv.org/abs/2404.11888v1
- Date: Thu, 18 Apr 2024 04:25:21 GMT
- Title: The Dog Walking Theory: Rethinking Convergence in Federated Learning
- Authors: Kun Zhai, Yifeng Gao, Xingjun Ma, Difan Zou, Guangnan Ye, Yu-Gang Jiang,
- Abstract summary: Federated learning (FL) is a collaborative learning paradigm that allows different clients to train one powerful global model without sharing their private data.
Although FL has demonstrated promising results in various applications, it is known to suffer from convergence issues caused by the data distribution shift across different clients.
We propose a novel FL algorithm emphFedWalk that leverages an external easy-to-converge task at the server side as a emphleash task to guide the local training of the clients.
- Score: 68.63601691672815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a collaborative learning paradigm that allows different clients to train one powerful global model without sharing their private data. Although FL has demonstrated promising results in various applications, it is known to suffer from convergence issues caused by the data distribution shift across different clients, especially on non-independent and identically distributed (non-IID) data. In this paper, we study the convergence of FL on non-IID data and propose a novel \emph{Dog Walking Theory} to formulate and identify the missing element in existing research. The Dog Walking Theory describes the process of a dog walker leash walking multiple dogs from one side of the park to the other. The goal of the dog walker is to arrive at the right destination while giving the dogs enough exercise (i.e., space exploration). In FL, the server is analogous to the dog walker while the clients are analogous to the dogs. This analogy allows us to identify one crucial yet missing element in existing FL algorithms: the leash that guides the exploration of the clients. To address this gap, we propose a novel FL algorithm \emph{FedWalk} that leverages an external easy-to-converge task at the server side as a \emph{leash task} to guide the local training of the clients. We theoretically analyze the convergence of FedWalk with respect to data heterogeneity (between server and clients) and task discrepancy (between the leash and the original tasks). Experiments on multiple benchmark datasets demonstrate the superiority of FedWalk over state-of-the-art FL methods under both IID and non-IID settings.
Related papers
- Analytic Federated Learning [34.15482252496494]
We introduce analytic federated learning (AFL), a new training paradigm that brings analytical (i.e., closed-form) solutions to the federated learning (FL) community.
Our AFL draws inspiration from analytic learning -- a gradient-free technique that trains neural networks with analytical solutions in one epoch.
We conduct experiments across various FL settings including extremely non-IID ones, and scenarios with a large number of clients.
arXiv Detail & Related papers (2024-05-25T13:58:38Z) - Fact Checking Beyond Training Set [64.88575826304024]
We show that the retriever-reader suffers from performance deterioration when it is trained on labeled data from one domain and used in another domain.
We propose an adversarial algorithm to make the retriever component robust against distribution shift.
We then construct eight fact checking scenarios from these datasets, and compare our model to a set of strong baseline models.
arXiv Detail & Related papers (2024-03-27T15:15:14Z) - Boot and Switch: Alternating Distillation for Zero-Shot Dense Retrieval [50.47192086219752]
$texttABEL$ is a simple but effective unsupervised method to enhance passage retrieval in zero-shot settings.
By either fine-tuning $texttABEL$ on labelled data or integrating it with existing supervised dense retrievers, we achieve state-of-the-art results.
arXiv Detail & Related papers (2023-11-27T06:22:57Z) - FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in
Realistic Healthcare Settings [51.09574369310246]
Federated Learning (FL) is a novel approach enabling several clients holding sensitive data to collaboratively train machine learning models.
We propose a novel cross-silo dataset suite focused on healthcare, FLamby, to bridge the gap between theory and practice of cross-silo FL.
Our flexible and modular suite allows researchers to easily download datasets, reproduce results and re-use the different components for their research.
arXiv Detail & Related papers (2022-10-10T12:17:30Z) - A Competitive Method for Dog Nose-print Re-identification [46.94755073943372]
This paper presents our proposed methods for dog nose-print authentication (Re-ID) task in CVPR 2022 pet biometric challenge.
With multiple models ensembled adopted, our methods achieve 86.67% AUC on the test set.
arXiv Detail & Related papers (2022-05-31T16:26:46Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z) - Over-the-Air Federated Learning from Heterogeneous Data [107.05618009955094]
Federated learning (FL) is a framework for distributed learning of centralized models.
We develop a Convergent OTA FL (COTAF) algorithm which enhances the common local gradient descent (SGD) FL algorithm.
We numerically show that the precoding induced by COTAF notably improves the convergence rate and the accuracy of models trained via OTA FL.
arXiv Detail & Related papers (2020-09-27T08:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.