Fact Checking Beyond Training Set
- URL: http://arxiv.org/abs/2403.18671v1
- Date: Wed, 27 Mar 2024 15:15:14 GMT
- Title: Fact Checking Beyond Training Set
- Authors: Payam Karisani, Heng Ji,
- Abstract summary: We show that the retriever-reader suffers from performance deterioration when it is trained on labeled data from one domain and used in another domain.
We propose an adversarial algorithm to make the retriever component robust against distribution shift.
We then construct eight fact checking scenarios from these datasets, and compare our model to a set of strong baseline models.
- Score: 64.88575826304024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evaluating the veracity of everyday claims is time consuming and in some cases requires domain expertise. We empirically demonstrate that the commonly used fact checking pipeline, known as the retriever-reader, suffers from performance deterioration when it is trained on the labeled data from one domain and used in another domain. Afterwards, we delve into each component of the pipeline and propose novel algorithms to address this problem. We propose an adversarial algorithm to make the retriever component robust against distribution shift. Our core idea is to initially train a bi-encoder on the labeled source data, and then, to adversarially train two separate document and claim encoders using unlabeled target data. We then focus on the reader component and propose to train it such that it is insensitive towards the order of claims and evidence documents. Our empirical evaluations support the hypothesis that such a reader shows a higher robustness against distribution shift. To our knowledge, there is no publicly available multi-topic fact checking dataset. Thus, we propose a simple automatic method to re-purpose two well-known fact checking datasets. We then construct eight fact checking scenarios from these datasets, and compare our model to a set of strong baseline models, including recent domain adaptation models that use GPT4 for generating synthetic data.
Related papers
- Data Taggants: Dataset Ownership Verification via Harmless Targeted Data Poisoning [12.80649024603656]
This paper introduces data taggants, a novel non-backdoor dataset ownership verification technique.
We validate our approach through comprehensive and realistic experiments on ImageNet1k using ViT and ResNet models with state-of-the-art training recipes.
arXiv Detail & Related papers (2024-10-09T12:49:23Z) - Contrastive Learning to Improve Retrieval for Real-world Fact Checking [84.57583869042791]
We present Contrastive Fact-Checking Reranker (CFR), an improved retriever for fact-checking complex claims.
We leverage the AVeriTeC dataset, which annotates subquestions for claims with human written answers from evidence documents.
We find a 6% improvement in veracity classification accuracy on the dataset.
arXiv Detail & Related papers (2024-10-07T00:09:50Z) - Consistent Document-Level Relation Extraction via Counterfactuals [47.75615221596254]
It has been shown that document-level relation extraction models trained on real-world data suffer from factual biases.
We present CovEReD, a dataset of document-level counterfactual data for document extraction.
We show that by generating document-level counterfactual data with CovEReD models on them, consistency is maintained.
arXiv Detail & Related papers (2024-07-09T09:21:55Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in video surveillance.
Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models.
In this paper, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them.
arXiv Detail & Related papers (2021-09-12T15:51:41Z) - Robust Document Representations using Latent Topics and Metadata [17.306088038339336]
We propose a novel approach to fine-tuning a pre-trained neural language model for document classification problems.
We generate document representations that capture both text and metadata artifacts in a task manner.
Our solution also incorporates metadata explicitly rather than just augmenting them with text.
arXiv Detail & Related papers (2020-10-23T21:52:38Z) - Partially-Aligned Data-to-Text Generation with Distant Supervision [69.15410325679635]
We propose a new generation task called Partially-Aligned Data-to-Text Generation (PADTG)
It is more practical since it utilizes automatically annotated data for training and thus considerably expands the application domains.
Our framework outperforms all baseline models as well as verify the feasibility of utilizing partially-aligned data.
arXiv Detail & Related papers (2020-10-03T03:18:52Z) - A Benchmark for Point Clouds Registration Algorithms [6.667628085623009]
Point clouds registration is a fundamental step of many point clouds processing pipelines.
Most algorithms are tested on data that are collected ad-hoc and not shared with the research community.
This work aims at encouraging authors to use a public and shared benchmark, instead of data collected ad-hoc.
arXiv Detail & Related papers (2020-03-28T17:02:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.