FCNCP: A Coupled Nonnegative CANDECOMP/PARAFAC Decomposition Based on Federated Learning
- URL: http://arxiv.org/abs/2404.11890v1
- Date: Thu, 18 Apr 2024 04:30:18 GMT
- Title: FCNCP: A Coupled Nonnegative CANDECOMP/PARAFAC Decomposition Based on Federated Learning
- Authors: Yukai Cai, Hang Liu, Xiulin Wang, Hongjin Li, Ziyi Wang, Chuanshuai Yang, Fengyu Cong,
- Abstract summary: This study proposes to develop a series of efficient non-negative coupled tensor decomposition algorithm frameworks based on federated learning called FCNCP.
It combines the good discriminative performance of tensor decomposition in high-dimensional data representation and decomposition.
It was found that contralateral stimulation induced more symmetrical components in the activation areas of the left and right hemispheres.
- Score: 6.854368686078438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of brain science, data sharing across servers is becoming increasingly challenging due to issues such as industry competition, privacy security, and administrative procedure policies and regulations. Therefore, there is an urgent need to develop new methods for data analysis and processing that enable scientific collaboration without data sharing. In view of this, this study proposes to study and develop a series of efficient non-negative coupled tensor decomposition algorithm frameworks based on federated learning called FCNCP for the EEG data arranged on different servers. It combining the good discriminative performance of tensor decomposition in high-dimensional data representation and decomposition, the advantages of coupled tensor decomposition in cross-sample tensor data analysis, and the features of federated learning for joint modelling in distributed servers. The algorithm utilises federation learning to establish coupling constraints for data distributed across different servers. In the experiments, firstly, simulation experiments are carried out using simulated data, and stable and consistent decomposition results are obtained, which verify the effectiveness of the proposed algorithms in this study. Then the FCNCP algorithm was utilised to decompose the fifth-order event-related potential (ERP) tensor data collected by applying proprioceptive stimuli on the left and right hands. It was found that contralateral stimulation induced more symmetrical components in the activation areas of the left and right hemispheres. The conclusions drawn are consistent with the interpretations of related studies in cognitive neuroscience, demonstrating that the method can efficiently process higher-order EEG data and that some key hidden information can be preserved.
Related papers
- Federated scientific machine learning for approximating functions and solving differential equations with data heterogeneity [2.4442398425025416]
This paper explores the integration of FL and SciML to approximate complex functions and solve differential equations.
We introduce various data generation methods to control the degree of non-independent and identically distributed (non-iid) data.
To demonstrate the effectiveness of our methods, we conducted 10 experiments, including 2 on function approximation, 5 PDE problems on FedPINN, and 3 PDE problems on FedDeepONet.
arXiv Detail & Related papers (2024-10-17T01:57:04Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - Magnitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification
in the Presence of Data Heterogeneity [60.791736094073]
Communication overhead has become one of the major bottlenecks in the distributed training of deep neural networks.
We propose a magnitude-driven sparsification scheme, which addresses the non-convergence issue of SIGNSGD.
The proposed scheme is validated through experiments on Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets.
arXiv Detail & Related papers (2023-02-19T17:42:35Z) - Personalized Decentralized Multi-Task Learning Over Dynamic
Communication Graphs [59.96266198512243]
We propose a decentralized and federated learning algorithm for tasks that are positively and negatively correlated.
Our algorithm uses gradients to calculate the correlations among tasks automatically, and dynamically adjusts the communication graph to connect mutually beneficial tasks and isolate those that may negatively impact each other.
We conduct experiments on a synthetic Gaussian dataset and a large-scale celebrity attributes (CelebA) dataset.
arXiv Detail & Related papers (2022-12-21T18:58:24Z) - Federated XGBoost on Sample-Wise Non-IID Data [8.49189353769386]
Decision tree-based models, in particular XGBoost, can handle non-IID data.
This paper investigates the effects of how Federated XGBoost is impacted by non-IID distributions.
arXiv Detail & Related papers (2022-09-03T06:14:20Z) - FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for
Federated Learning on Non-IID Data [69.0785021613868]
Federated learning is a distributed machine learning approach which enables a shared server model to learn by aggregating the locally-computed parameter updates with the training data from spatially-distributed client silos.
We propose the Federated Invariant Learning Consistency (FedILC) approach, which leverages the gradient covariance and the geometric mean of Hessians to capture both inter-silo and intra-silo consistencies.
This is relevant to various fields such as medical healthcare, computer vision, and the Internet of Things (IoT)
arXiv Detail & Related papers (2022-05-19T03:32:03Z) - Deep Stable Learning for Out-Of-Distribution Generalization [27.437046504902938]
Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution.
Eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models.
We propose to address this problem by removing the dependencies between features via learning weights for training samples.
arXiv Detail & Related papers (2021-04-16T03:54:21Z) - Sample-based and Feature-based Federated Learning via Mini-batch SSCA [18.11773963976481]
This paper investigates sample-based and feature-based federated optimization.
We show that the proposed algorithms can preserve data privacy through the model aggregation mechanism.
We also show that the proposed algorithms converge to Karush-Kuhn-Tucker points of the respective federated optimization problems.
arXiv Detail & Related papers (2021-04-13T08:23:46Z) - Privacy-Preserving Asynchronous Federated Learning Algorithms for
Multi-Party Vertically Collaborative Learning [151.47900584193025]
We propose an asynchronous federated SGD (AFSGD-VP) algorithm and its SVRG and SAGA variants on the vertically partitioned data.
To the best of our knowledge, AFSGD-VP and its SVRG and SAGA variants are the first asynchronous federated learning algorithms for vertically partitioned data.
arXiv Detail & Related papers (2020-08-14T08:08:15Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.