論文の概要: Trusted Multi-view Learning under Noisy Supervision
- arxiv url: http://arxiv.org/abs/2404.11944v3
- Date: Wed, 23 Jul 2025 15:34:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 22:33:14.636509
- Title: Trusted Multi-view Learning under Noisy Supervision
- Title(参考訳): ノイズスーパービジョン下での信頼されたマルチビュー学習
- Authors: Yilin Zhang, Cai Xu, Han Jiang, Ziyu Guan, Wei Zhao, Xiaofei He, Murat Sensoy,
- Abstract要約: 本稿では,ノイズラベルのガイダンスに基づき,信頼度の高い多視点学習モデルを構築する手法を提案する。
TMNRは明らかなディープニューラルネットワークを使用して、信念と不確実性の両方を捉えるビュー固有の意見を構築する。
TMNR2は、エビデンスラベルの整合性を通じて、潜在的に誤ラベルされたサンプルを特定し、近隣の情報から擬似ラベルを生成する。
- 参考スコア(独自算出の注目度): 20.668620759102115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-view learning methods often focus on improving decision accuracy while neglecting the decision uncertainty, which significantly restricts their applications in safety-critical scenarios. To address this, trusted multi-view learning methods estimate prediction uncertainties by learning class distributions from each instance. However, these methods heavily rely on high quality ground-truth labels. This motivates us to delve into a new problem: how to develop a reliable multi-view learning model under the guidance of noisy labels? We propose the Trusted Multi view Noise Refining (TMNR) method to address this challenge by modeling label noise arising from low-quality data features and easily-confused classes. TMNR employs evidential deep neural networks to construct view-specific opinions that capture both beliefs and uncertainty. These opinions are then transformed through noise correlation matrices to align with the noisy supervision, where matrix elements are constrained by sample uncertainty to reflect label reliability. Furthermore, considering the challenge of jointly optimizing the evidence network and noise correlation matrices under noisy supervision, we further propose Trusted Multi-view Noise Re-Refining (TMNR^2 ), which disentangles this complex co-training problem by establishing different training objectives for distinct modules. TMNR^2 identifies potentially mislabeled samples through evidence-label consistency and generates pseudo-labels from neighboring information. By assigning clean samples to optimize evidential networks and noisy samples to guide noise correlation matrices, respectively, TMNR^2 reduces mapping interference and achieves stabilizes training. Experimental results demonstrate that TMNR^2 significantly outperforms baseline methods, with average accuracy improvements of 7% on datasets with 50% label noise.
- Abstract(参考訳): マルチビュー学習手法は、意思決定の不確実性を無視しながら、意思決定精度の向上に重点を置いていることが多い。
これを解決するために、信頼度の高い多視点学習手法は、各インスタンスからクラス分布を学習することで予測の不確実性を推定する。
しかし、これらの手法は高品質な接地木ラベルに大きく依存している。
これは、ノイズラベルの指導のもと、信頼できるマルチビュー学習モデルをどのように開発するかという、新しい問題を掘り下げるためのモチベーションとなる。
本稿では,低品質なデータ特徴と難解なクラスから生じるラベルノイズをモデル化することで,この課題に対処するTrusted Multi View Noise Refining (TMNR)手法を提案する。
TMNRは明らかなディープニューラルネットワークを使用して、信念と不確実性の両方を捉えるビュー固有の意見を構築する。
これらの意見は、ノイズ相関行列によって変換され、ノイズの監督と整合し、行列要素はサンプルの不確実性によって制約され、ラベルの信頼性を反映する。
さらに,ノイズ管理下でのエビデンスネットワークとノイズ相関行列を協調的に最適化することの課題を考慮し,異なるモジュールに対する異なるトレーニング目標を確立することで,この複雑な協調学習問題を解消するTrusted Multi-view Noise Re-Refining (TMNR^2 )を提案する。
TMNR^2は、エビデンスラベルの整合性を通じて、潜在的に誤ラベルされたサンプルを特定し、近隣の情報から擬似ラベルを生成する。
ノイズ相関行列を導出するために,透明なサンプルを割り当て,ノイズ相関行列を導出することにより,TMNR^2はマッピング干渉を低減し,訓練を安定させる。
実験の結果,TMNR^2はベースライン法よりも有意に優れ,50%のラベルノイズを有するデータセットでは平均精度が7%向上した。
関連論文リスト
- Correcting Noisy Multilabel Predictions: Modeling Label Noise through Latent Space Shifts [4.795811957412855]
ほとんどの現実世界の機械学習アプリケーションでは、データのノイズは避けられないように思える。
マルチラベル分類における雑音ラベル学習の分野について検討した。
我々のモデルは、雑音のラベル付けは潜伏変数の変化から生じると仮定し、より堅牢で有益な学習手段を提供する。
論文 参考訳(メタデータ) (2025-02-20T05:41:52Z) - Mitigating Instance-Dependent Label Noise: Integrating Self-Supervised Pretraining with Pseudo-Label Refinement [3.272177633069322]
実世界のデータセットは、アノテーションプロセス中にヒューマンエラー、あいまいさ、リソース制約のために、ノイズの多いラベルを含むことが多い。
そこで本研究では,SimCLRを用いた自己教師型学習と反復的擬似ラベル改良を組み合わせた新しいフレームワークを提案する。
提案手法は,特に高騒音条件下では,いくつかの最先端手法よりも優れる。
論文 参考訳(メタデータ) (2024-12-06T09:56:49Z) - Robust Learning under Hybrid Noise [24.36707245704713]
本稿では,データリカバリの観点からハイブリッドノイズに対処するため,新たな統合学習フレームワーク"Feature and Label Recovery"(FLR)を提案する。
論文 参考訳(メタデータ) (2024-07-04T16:13:25Z) - Stable Neighbor Denoising for Source-free Domain Adaptive Segmentation [91.83820250747935]
擬似ラベルノイズは主に不安定なサンプルに含まれており、ほとんどのピクセルの予測は自己学習中に大きく変化する。
我々は, 安定・不安定な試料を効果的に発見する, SND(Stable Neighbor Denoising)アプローチを導入する。
SNDは、様々なSFUDAセマンティックセグメンテーション設定における最先端メソッドよりも一貫して優れている。
論文 参考訳(メタデータ) (2024-06-10T21:44:52Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Multi-Label Noise Transition Matrix Estimation with Label Correlations:
Theory and Algorithm [73.94839250910977]
ノイズの多いマルチラベル学習は、大規模な正確なラベルの収集によって生じる課題により、注目を集めている。
遷移行列の導入は、マルチラベルノイズをモデル化し、統計的に一貫したアルゴリズムの開発に役立つ。
そこで本稿では, アンカーポイントを必要とせずに, ラベル相関を利用した新しい推定器を提案する。
論文 参考訳(メタデータ) (2023-09-22T08:35:38Z) - Co-Learning Meets Stitch-Up for Noisy Multi-label Visual Recognition [70.00984078351927]
本稿では,多ラベル分類と長期学習の特徴に基づく雑音の低減に焦点をあてる。
よりクリーンなサンプルを合成し,マルチラベルノイズを直接低減するStitch-Up拡張を提案する。
ヘテロジニアス・コラーニング・フレームワークは、長い尾の分布とバランスの取れた分布の不整合を活用するためにさらに設計されている。
論文 参考訳(メタデータ) (2023-07-03T09:20:28Z) - Label Noise-Robust Learning using a Confidence-Based Sieving Strategy [15.997774467236352]
ラベルノイズを伴うタスクの学習では、オーバーフィッティングに対するモデルの堅牢性を改善することが重要な課題である。
サンプルをノイズのあるラベルで識別し、モデルを学習するのを防ぐことは、この課題に対処するための有望なアプローチである。
本研究では, 信頼度誤差と呼ばれる新しい判別基準と, クリーンサンプルとノイズサンプルを効果的に識別するためのCONFESと呼ばれるシービング戦略を提案する。
論文 参考訳(メタデータ) (2022-10-11T10:47:28Z) - Uncertainty-Aware Learning Against Label Noise on Imbalanced Datasets [23.4536532321199]
不整合データセットのラベルノイズを処理するための不確かさを意識したラベル補正フレームワークを提案する。
本研究では,不均衡なデータセットのラベルノイズを処理するために,不確かさを意識したラベル補正フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-12T11:35:55Z) - Robust Meta-learning with Sampling Noise and Label Noise via
Eigen-Reptile [78.1212767880785]
Meta-learnerは、利用可能なサンプルがわずかしかないため、過度に適合する傾向がある。
ノイズの多いラベルでデータを扱う場合、メタラーナーはラベルノイズに対して非常に敏感になる可能性がある。
本稿では,タスク固有のパラメータの主要な方向でメタパラメータを更新するEigen-Reptile(ER)を提案する。
論文 参考訳(メタデータ) (2022-06-04T08:48:02Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
本稿では,ラベルノイズの存在下での分類の問題に対処する。
提案手法の核心は,サンプルのアノテートラベルと特徴空間内のその近傍のラベルの分布との整合性に依存するサンプル選択機構である。
提案手法は,CIFARCIFAR100とWebVisionやANIMAL-10Nなどの実環境ノイズデータセットの両方で,従来の手法をはるかに上回っている。
論文 参考訳(メタデータ) (2021-11-22T15:49:20Z) - Robust Long-Tailed Learning under Label Noise [50.00837134041317]
本研究では,長期ラベル分布におけるラベルノイズ問題について検討する。
本稿では,長期学習のための雑音検出を実現する頑健なフレームワークAlgoを提案する。
我々のフレームワークは、半教師付き学習アルゴリズムを自然に活用して一般化をさらに改善することができる。
論文 参考訳(メタデータ) (2021-08-26T03:45:00Z) - Denoising Distantly Supervised Named Entity Recognition via a
Hypergeometric Probabilistic Model [26.76830553508229]
ハイパージオメトリ・ラーニング(HGL)は、遠距離教師付きエンティティ認識のための認知アルゴリズムである。
HGLはノイズ分布とインスタンスレベルの信頼性の両方を考慮に入れている。
実験により、HGLは遠方の監督から取得した弱いラベル付きデータを効果的に復調できることが示された。
論文 参考訳(メタデータ) (2021-06-17T04:01:25Z) - Learning Noise Transition Matrix from Only Noisy Labels via Total
Variation Regularization [88.91872713134342]
本稿では,雑音遷移行列を推定し,同時に分類器を学習する理論的基礎付け手法を提案する。
提案手法の有効性を,ベンチマークおよび実世界のデータセットを用いた実験により示す。
論文 参考訳(メタデータ) (2021-02-04T05:09:18Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
本稿では,ノイズラベルをインスタンスに明示的に関連付ける,単純かつ普遍的な確率モデルを提案する。
合成および実世界のラベルノイズを用いたデータセット実験により,提案手法がロバスト性に大きな改善をもたらすことを確認した。
論文 参考訳(メタデータ) (2021-01-14T05:43:51Z) - Multi-Objective Interpolation Training for Robustness to Label Noise [17.264550056296915]
標準教師付きコントラスト学習はラベル雑音の存在下で劣化することを示す。
コントラスト学習により学習したロバストな特徴表現を利用する新しいラベルノイズ検出手法を提案する。
合成および実世界のノイズベンチマークの実験は、MOIT/MOIT+が最先端の結果を得ることを示した。
論文 参考訳(メタデータ) (2020-12-08T15:01:54Z) - Meta Transition Adaptation for Robust Deep Learning with Noisy Labels [61.8970957519509]
本研究では,新しいメタ遷移学習戦略を提案する。
具体的には、クリーンなラベル付きメタデータの小さなセットのサウンドガイダンスにより、ノイズ遷移行列と分類器パラメータを相互に改善することができる。
本手法は, 従来技術よりも頑健な性能で, 遷移行列をより正確に抽出することができる。
論文 参考訳(メタデータ) (2020-06-10T07:27:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。