論文の概要: How Do Recommendation Models Amplify Popularity Bias? An Analysis from the Spectral Perspective
- arxiv url: http://arxiv.org/abs/2404.12008v3
- Date: Thu, 13 Jun 2024 07:31:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 23:16:04.434143
- Title: How Do Recommendation Models Amplify Popularity Bias? An Analysis from the Spectral Perspective
- Title(参考訳): レコメンデーションモデルはどのように大衆バイアスを増幅するか? : スペクトルから見た分析
- Authors: Siyi Lin, Chongming Gao, Jiawei Chen, Sheng Zhou, Binbin Hu, Yan Feng, Chun Chen, Can Wang,
- Abstract要約: 勧告システム(RS)は、しばしば人気バイアスに悩まされる。
本研究は,本現象の根本原因を明らかにするための包括的実験および理論的解析を行う。
本稿では、スペクトルノルム正規化器を利用して主特異値の大きさをペナルティ化する新しいデバイアスング戦略を提案する。
- 参考スコア(独自算出の注目度): 26.949692163589226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommendation Systems (RS) are often plagued by popularity bias. When training a recommendation model on a typically long-tailed dataset, the model tends to not only inherit this bias but often exacerbate it, resulting in over-representation of popular items in the recommendation lists. This study conducts comprehensive empirical and theoretical analyses to expose the root causes of this phenomenon, yielding two core insights: 1) Item popularity is memorized in the principal spectrum of the score matrix predicted by the recommendation model; 2) The dimension collapse phenomenon amplifies the relative prominence of the principal spectrum, thereby intensifying the popularity bias. Building on these insights, we propose a novel debiasing strategy that leverages a spectral norm regularizer to penalize the magnitude of the principal singular value. We have developed an efficient algorithm to expedite the calculation of the spectral norm by exploiting the spectral property of the score matrix. Extensive experiments across seven real-world datasets and three testing paradigms have been conducted to validate the superiority of the proposed method.
- Abstract(参考訳): 勧告システム(RS)は、しばしば人気バイアスに悩まされる。
通常、長い尾のデータセットでレコメンデーションモデルをトレーニングする場合、このバイアスを継承するだけでなく、しばしば悪化させる傾向があり、レコメンデーションリストで人気のある項目が過剰に表現される。
本研究は、この現象の根本原因を明らかにするための総合的な経験的および理論的分析を行い、2つの中核的な洞察を得た。
1)推薦モデルにより予測されるスコア行列の主スペクトルにアイテムの人気が記憶される。
2) 次元崩壊現象は主スペクトルの相対的な優位性を増幅し, 人気バイアスを増大させる。
これらの知見に基づいて、スペクトルノルム正規化器を利用して主特異値の大きさをペナルティ化する新しいデバイアスング戦略を提案する。
我々は,スコア行列のスペクトル特性を利用してスペクトルノルムの計算を高速化する効率的なアルゴリズムを開発した。
提案手法の優位性を検証するために,実世界の7つのデータセットと3つのテストパラダイムにわたる大規模な実験を行った。
関連論文リスト
- Mitigating Exposure Bias in Online Learning to Rank Recommendation: A Novel Reward Model for Cascading Bandits [23.15042648884445]
我々は,Linear Cascading Banditsとして知られる,よく知られた文脈的帯域幅アルゴリズムのクラスにおける露出バイアスについて検討した。
本研究では,1)暗黙的なユーザフィードバック,2)レコメンデーションリストにおける項目の位置という2つの要因に基づいて,モデルパラメータを更新する Exposure-Aware reward モデルを提案する。
論文 参考訳(メタデータ) (2024-08-08T09:35:01Z) - Going Beyond Popularity and Positivity Bias: Correcting for Multifactorial Bias in Recommender Systems [74.47680026838128]
ユーザインタラクションデータとレコメンダシステム(RS)の2つの典型的なバイアスは、人気バイアスと肯定バイアスである。
項目と評価値の双方に影響される多因子選択バイアスについて検討する。
分散を低減し、最適化の堅牢性を向上させるため、スムースで交互に勾配降下する手法を提案する。
論文 参考訳(メタデータ) (2024-04-29T12:18:21Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
大規模言語モデル(LLM)は人気を集め、大規模なユーザコミュニティで広く採用されている。
既存の評価手法には多くの制約があり、それらの結果は限定的な解釈可能性を示している。
本稿では,LPMの高性能性を活用し,モデル内のバイアスを評価するGPTBIASというバイアス評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-11T12:02:14Z) - Test Time Embedding Normalization for Popularity Bias Mitigation [6.145760252113906]
人気バイアスはレコメンデーションシステムの分野で広く問題となっている。
本稿では,人気バイアスを軽減するための簡易かつ効果的な戦略として,'Test Time Embedding Normalization'を提案する。
論文 参考訳(メタデータ) (2023-08-22T08:57:44Z) - Self-supervised debiasing using low rank regularization [59.84695042540525]
純粋な相関は、ディープニューラルネットワークの強いバイアスを引き起こし、一般化能力を損なう可能性がある。
ラベルのないサンプルと互換性のある自己監督型脱バイアスフレームワークを提案する。
注目すべきは,提案フレームワークが自己教師付き学習ベースラインの一般化性能を著しく向上させることである。
論文 参考訳(メタデータ) (2022-10-11T08:26:19Z) - Bilateral Self-unbiased Learning from Biased Implicit Feedback [10.690479112143658]
バイラテラル・セルフ・アンバイアスド・レコメンダ(BISER)という,新しいアンバイアスド・レコメンダラー・ラーニング・モデルを提案する。
BISERは、(i)自己逆確率重み付け(SIPW)と(ii)モデル予測における2つの相補的モデル間のギャップを埋める両側非バイアス学習(BU)の2つの重要な構成要素から構成される。
大規模な実験により、BISERは複数のデータセットに対して最先端の非バイアスのレコメンデータモデルより一貫して優れていることが示されている。
論文 参考訳(メタデータ) (2022-07-26T05:17:42Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
我々はCPR(Cross Pairwise Ranking)という新しい学習パラダイムを開発する。
CPRは、露出メカニズムを知らずに不偏の推奨を達成する。
理論的には、この方法が学習に対するユーザ/イテムの適合性の影響を相殺することを証明する。
論文 参考訳(メタデータ) (2022-04-26T09:20:27Z) - Debiased Explainable Pairwise Ranking from Implicit Feedback [0.3867363075280543]
BPR(Bayesian Personalized Ranking)に焦点をあてる。
BPRはアウトプットを説明しないブラックボックスモデルであり、ユーザのレコメンデーションに対する信頼を制限する。
本稿では,項目に基づく説明とともにレコメンデーションを生成する新しい説明可能な損失関数と,それに対応する行列分解モデルを提案する。
論文 参考訳(メタデータ) (2021-07-30T17:19:37Z) - Towards Debiasing NLU Models from Unknown Biases [70.31427277842239]
NLUモデルは、しばしばバイアスを利用して、意図したタスクを適切に学習することなく、データセット固有の高いパフォーマンスを達成する。
本稿では、モデルがバイアスを事前に知ることなく、主にバイアスを利用するのを防ぐ自己バイアスフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-25T15:49:39Z) - Mitigating Gender Bias Amplification in Distribution by Posterior
Regularization [75.3529537096899]
本稿では,男女差の増幅問題について,分布の観点から検討する。
後続正則化に基づくバイアス緩和手法を提案する。
私たちの研究はバイアス増幅の理解に光を当てている。
論文 参考訳(メタデータ) (2020-05-13T11:07:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。