Sequential Compositional Generalization in Multimodal Models
- URL: http://arxiv.org/abs/2404.12013v1
- Date: Thu, 18 Apr 2024 09:04:15 GMT
- Title: Sequential Compositional Generalization in Multimodal Models
- Authors: Semih Yagcioglu, Osman Batur İnce, Aykut Erdem, Erkut Erdem, Desmond Elliott, Deniz Yuret,
- Abstract summary: We conduct a comprehensive assessment of several unimodal and multimodal models.
Our findings reveal that bi-modal and tri-modal models exhibit a clear edge over their text-only counterparts.
- Score: 23.52949473093583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of large-scale multimodal models has paved the pathway for groundbreaking advances in generative modeling and reasoning, unlocking transformative applications in a variety of complex tasks. However, a pressing question that remains is their genuine capability for stronger forms of generalization, which has been largely underexplored in the multimodal setting. Our study aims to address this by examining sequential compositional generalization using \textsc{CompAct} (\underline{Comp}ositional \underline{Act}ivities)\footnote{Project Page: \url{http://cyberiada.github.io/CompAct}}, a carefully constructed, perceptually grounded dataset set within a rich backdrop of egocentric kitchen activity videos. Each instance in our dataset is represented with a combination of raw video footage, naturally occurring sound, and crowd-sourced step-by-step descriptions. More importantly, our setup ensures that the individual concepts are consistently distributed across training and evaluation sets, while their compositions are novel in the evaluation set. We conduct a comprehensive assessment of several unimodal and multimodal models. Our findings reveal that bi-modal and tri-modal models exhibit a clear edge over their text-only counterparts. This highlights the importance of multimodality while charting a trajectory for future research in this domain.
Related papers
- A Practitioner's Guide to Continual Multimodal Pretraining [83.63894495064855]
Multimodal foundation models serve numerous applications at the intersection of vision and language.
To keep models updated, research into continual pretraining mainly explores scenarios with either infrequent, indiscriminate updates on large-scale new data, or frequent, sample-level updates.
We introduce FoMo-in-Flux, a continual multimodal pretraining benchmark with realistic compute constraints and practical deployment requirements.
arXiv Detail & Related papers (2024-08-26T17:59:01Z) - Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models [6.610033827647869]
In real-world scenarios, consistently acquiring complete multimodal data presents significant challenges.
This often leads to the issue of missing modalities, where data for certain modalities are absent.
We propose a novel framework integrating parameter-efficient fine-tuning of unimodal pretrained models with a self-supervised joint-embedding learning method.
arXiv Detail & Related papers (2024-07-17T14:44:25Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - Neural Multimodal Topic Modeling: A Comprehensive Evaluation [18.660262940980477]
This paper presents the first systematic and comprehensive evaluation of multimodal topic modeling.
We propose two novel topic modeling solutions and two novel evaluation metrics.
Overall, our evaluation on an unprecedented rich and diverse collection of datasets indicates that both of our models generate coherent and diverse topics.
arXiv Detail & Related papers (2024-03-26T01:29:46Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
We study the challenge of interaction quantification in a semi-supervised setting with only labeled unimodal data.
Using a precise information-theoretic definition of interactions, our key contribution is the derivation of lower and upper bounds.
We show how these theoretical results can be used to estimate multimodal model performance, guide data collection, and select appropriate multimodal models for various tasks.
arXiv Detail & Related papers (2023-06-07T15:44:53Z) - Why Existing Multimodal Crowd Counting Datasets Can Lead to Unfulfilled
Expectations in Real-World Applications [0.0]
All available multimodal datasets for crowd counting are used to investigate the differences between monomodal and multimodal models.
No general answer to this question can be derived from the existing datasets.
This paper establishes criteria for a potential dataset suitable for answering whether multimodal models perform better in crowd counting in general.
arXiv Detail & Related papers (2023-04-13T11:09:28Z) - Multimodal Contrastive Learning via Uni-Modal Coding and Cross-Modal
Prediction for Multimodal Sentiment Analysis [19.07020276666615]
We propose a novel framework named MultiModal Contrastive Learning (MMCL) for multimodal representation to capture intra- and inter-modality dynamics simultaneously.
We also design two contrastive learning tasks, instance- and sentiment-based contrastive learning, to promote the process of prediction and learn more interactive information related to sentiment.
arXiv Detail & Related papers (2022-10-26T08:24:15Z) - Multimodal Image Synthesis and Editing: The Generative AI Era [131.9569600472503]
multimodal image synthesis and editing has become a hot research topic in recent years.
We comprehensively contextualize the advance of the recent multimodal image synthesis and editing.
We describe benchmark datasets and evaluation metrics as well as corresponding experimental results.
arXiv Detail & Related papers (2021-12-27T10:00:16Z) - Attention Bottlenecks for Multimodal Fusion [90.75885715478054]
Machine perception models are typically modality-specific and optimised for unimodal benchmarks.
We introduce a novel transformer based architecture that uses fusion' for modality fusion at multiple layers.
We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks.
arXiv Detail & Related papers (2021-06-30T22:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.