FastVPINNs: Tensor-Driven Acceleration of VPINNs for Complex Geometries
- URL: http://arxiv.org/abs/2404.12063v1
- Date: Thu, 18 Apr 2024 10:21:28 GMT
- Title: FastVPINNs: Tensor-Driven Acceleration of VPINNs for Complex Geometries
- Authors: Thivin Anandh, Divij Ghose, Himanshu Jain, Sashikumaar Ganesan,
- Abstract summary: Variational Physics-Informed Neural Networks (VPINNs) utilize a variational loss function to solve partial differential equations.
FastVPINNs achieve a 100-fold reduction in the median training time per epoch compared to traditional hp-VPINNs.
- Score: 4.5594104437122684
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Variational Physics-Informed Neural Networks (VPINNs) utilize a variational loss function to solve partial differential equations, mirroring Finite Element Analysis techniques. Traditional hp-VPINNs, while effective for high-frequency problems, are computationally intensive and scale poorly with increasing element counts, limiting their use in complex geometries. This work introduces FastVPINNs, a tensor-based advancement that significantly reduces computational overhead and improves scalability. Using optimized tensor operations, FastVPINNs achieve a 100-fold reduction in the median training time per epoch compared to traditional hp-VPINNs. With proper choice of hyperparameters, FastVPINNs surpass conventional PINNs in both speed and accuracy, especially in problems with high-frequency solutions. Demonstrated effectiveness in solving inverse problems on complex domains underscores FastVPINNs' potential for widespread application in scientific and engineering challenges, opening new avenues for practical implementations in scientific machine learning.
Related papers
- Stiff Transfer Learning for Physics-Informed Neural Networks [1.5361702135159845]
We propose a novel approach, stiff transfer learning for physics-informed neural networks (STL-PINNs) to tackle stiff ordinary differential equations (ODEs) and partial differential equations (PDEs)
Our methodology involves training a Multi-Head-PINN in a low-stiff regime, and obtaining the final solution in a high stiff regime by transfer learning.
This addresses the failure modes related to stiffness in PINNs while maintaining computational efficiency by computing "one-shot" solutions.
arXiv Detail & Related papers (2025-01-28T20:27:38Z) - The Finite Element Neural Network Method: One Dimensional Study [0.0]
This research introduces the finite element neural network method (FENNM) within the framework of the Petrov-Galerkin method.
FENNM uses convolution operations to approximate the weighted residual of the differential equations.
This enables the integration of forcing terms and natural boundary conditions into the loss function similar to conventional finite element method (FEM) solvers.
arXiv Detail & Related papers (2025-01-21T21:39:56Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - An efficient hp-Variational PINNs framework for incompressible Navier-Stokes equations [0.0]
Physics-informed neural networks (PINNs) are able to solve partial differential equations (PDEs) by incorporating the residuals of the PDEs into their loss functions.
hp-VPINNs have shown promise over traditional PINNs, but lack a framework capable of handling complex geometries.
FastVPINNs was introduced to address these challenges by incorporating tensor-based loss computations, significantly improving the training efficiency.
arXiv Detail & Related papers (2024-09-06T09:17:41Z) - Improved physics-informed neural network in mitigating gradient related failures [11.356695216531328]
Physics-informed neural networks (PINNs) integrate fundamental physical principles with advanced data-driven techniques.
PINNs face persistent challenges with stiffness in gradient flow, which limits their predictive capabilities.
This paper presents an improved PINN to mitigate gradient-related failures.
arXiv Detail & Related papers (2024-07-28T07:58:10Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Incremental Spatial and Spectral Learning of Neural Operators for
Solving Large-Scale PDEs [86.35471039808023]
We introduce the Incremental Fourier Neural Operator (iFNO), which progressively increases the number of frequency modes used by the model.
We show that iFNO reduces total training time while maintaining or improving generalization performance across various datasets.
Our method demonstrates a 10% lower testing error, using 20% fewer frequency modes compared to the existing Fourier Neural Operator, while also achieving a 30% faster training.
arXiv Detail & Related papers (2022-11-28T09:57:15Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Reduced-PINN: An Integration-Based Physics-Informed Neural Networks for
Stiff ODEs [0.0]
Physics-informed neural networks (PINNs) have recently received much attention due to their capabilities in solving both forward and inverse problems.
We propose a new PINN architecture, called Reduced-PINN, that utilizes a reduced-order integration method to enable the PINN to solve stiff chemical kinetics.
arXiv Detail & Related papers (2022-08-23T09:20:42Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
We introduce a deep learning-based corrector called Neural Vector (NeurVec)
NeurVec can compensate for integration errors and enable larger time step sizes in simulations.
Our experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability.
arXiv Detail & Related papers (2022-08-07T09:02:18Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.