MaskCD: A Remote Sensing Change Detection Network Based on Mask Classification
- URL: http://arxiv.org/abs/2404.12081v1
- Date: Thu, 18 Apr 2024 11:05:15 GMT
- Title: MaskCD: A Remote Sensing Change Detection Network Based on Mask Classification
- Authors: Weikang Yu, Xiaokang Zhang, Samiran Das, Xiao Xiang Zhu, Pedram Ghamisi,
- Abstract summary: Change (CD) from remote sensing (RS) images using deep learning has been widely investigated in the literature.
We propose MaskCD to detect changed areas by adaptively generating categorized masks from input image pairs.
It reconstructs the desired changed objects by decoding the pixel-wise representations into learnable mask proposals.
- Score: 29.15203530375882
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Change detection (CD) from remote sensing (RS) images using deep learning has been widely investigated in the literature. It is typically regarded as a pixel-wise labeling task that aims to classify each pixel as changed or unchanged. Although per-pixel classification networks in encoder-decoder structures have shown dominance, they still suffer from imprecise boundaries and incomplete object delineation at various scenes. For high-resolution RS images, partly or totally changed objects are more worthy of attention rather than a single pixel. Therefore, we revisit the CD task from the mask prediction and classification perspective and propose MaskCD to detect changed areas by adaptively generating categorized masks from input image pairs. Specifically, it utilizes a cross-level change representation perceiver (CLCRP) to learn multiscale change-aware representations and capture spatiotemporal relations from encoded features by exploiting deformable multihead self-attention (DeformMHSA). Subsequently, a masked-attention-based detection transformers (MA-DETR) decoder is developed to accurately locate and identify changed objects based on masked attention and self-attention mechanisms. It reconstructs the desired changed objects by decoding the pixel-wise representations into learnable mask proposals and making final predictions from these candidates. Experimental results on five benchmark datasets demonstrate the proposed approach outperforms other state-of-the-art models. Codes and pretrained models are available online (https://github.com/EricYu97/MaskCD).
Related papers
- Rethinking Remote Sensing Change Detection With A Mask View [6.3921187411592655]
Remote sensing change detection aims to compare two or more images recorded for the same area but taken at different stamps time to assess changes in geographical entities and environmental factors.
To address this shortcoming, this paper rethinks the change detection with the mask view, and further proposes the corresponding: 1) meta-architecture CDMask and 2) instance network CDMaskFormer.
arXiv Detail & Related papers (2024-06-21T17:27:58Z) - Siamese Masked Autoencoders [76.35448665609998]
We present Siamese Masked Autoencoders (SiamMAE) for learning visual correspondence from videos.
SiamMAE operates on pairs of randomly sampled video frames and asymmetrically masks them.
It outperforms state-of-the-art self-supervised methods on video object segmentation, pose keypoint propagation, and semantic part propagation tasks.
arXiv Detail & Related papers (2023-05-23T17:59:46Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
Masked image modeling is a promising self-supervised learning method for visual data.
We present AutoMAE, a framework that uses Gumbel-Softmax to interlink an adversarially-trained mask generator and a mask-guided image modeling process.
In our experiments, AutoMAE is shown to provide effective pretraining models on standard self-supervised benchmarks and downstream tasks.
arXiv Detail & Related papers (2023-03-12T05:28:55Z) - Towards Robust Video Object Segmentation with Adaptive Object
Calibration [18.094698623128146]
Video object segmentation (VOS) aims at segmenting objects in all target frames of a video, given annotated object masks of reference frames.
We propose a new deep network, which can adaptively construct object representations and calibrate object masks to achieve stronger robustness.
Our model achieves the state-of-the-art performance among existing published works, and also exhibits superior robustness against perturbations.
arXiv Detail & Related papers (2022-07-02T17:51:29Z) - Context Autoencoder for Self-Supervised Representation Learning [64.63908944426224]
We pretrain an encoder by making predictions in the encoded representation space.
The network is an encoder-regressor-decoder architecture.
We demonstrate the effectiveness of our CAE through superior transfer performance in downstream tasks.
arXiv Detail & Related papers (2022-02-07T09:33:45Z) - Image Inpainting with Edge-guided Learnable Bidirectional Attention Maps [85.67745220834718]
We present an edge-guided learnable bidirectional attention map (Edge-LBAM) for improving image inpainting of irregular holes.
Our Edge-LBAM method contains dual procedures,including structure-aware mask-updating guided by predict edges.
Extensive experiments show that our Edge-LBAM is effective in generating coherent image structures and preventing color discrepancy and blurriness.
arXiv Detail & Related papers (2021-04-25T07:25:16Z) - OLED: One-Class Learned Encoder-Decoder Network with Adversarial Context
Masking for Novelty Detection [1.933681537640272]
novelty detection is the task of recognizing samples that do not belong to the distribution of the target class.
Deep autoencoders have been widely used as a base of many unsupervised novelty detection methods.
We have designed a framework consisting of two competing networks, a Mask Module and a Reconstructor.
arXiv Detail & Related papers (2021-03-27T17:59:40Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
Image splicing forgery detection is a global binary classification task that distinguishes the tampered and non-tampered regions by image fingerprints.
We propose a novel network called dual-encoder U-Net (D-Unet) for image splicing forgery detection, which employs an unfixed encoder and a fixed encoder.
In an experimental comparison study of D-Unet and state-of-the-art methods, D-Unet outperformed the other methods in image-level and pixel-level detection.
arXiv Detail & Related papers (2020-12-03T10:54:02Z) - A Weakly Supervised Convolutional Network for Change Segmentation and
Classification [91.3755431537592]
We present W-CDNet, a novel weakly supervised change detection network that can be trained with image-level semantic labels.
W-CDNet can be trained with two different types of datasets, either containing changed image pairs only or a mixture of changed and unchanged image pairs.
arXiv Detail & Related papers (2020-11-06T20:20:45Z) - Two-Phase Object-Based Deep Learning for Multi-temporal SAR Image Change
Detection [23.2069257991734]
Change detection is one of the fundamental applications of synthetic aperture radar (SAR) images.
Speckle noise presented in SAR images has a much negative effect on change detection.
Two-phase object-based deep learning approach is proposed for multi-temporal SAR image change detection.
arXiv Detail & Related papers (2020-01-17T11:51:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.