論文の概要: MambaPupil: Bidirectional Selective Recurrent model for Event-based Eye tracking
- arxiv url: http://arxiv.org/abs/2404.12083v2
- Date: Tue, 30 Apr 2024 11:17:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 18:49:14.813609
- Title: MambaPupil: Bidirectional Selective Recurrent model for Event-based Eye tracking
- Title(参考訳): MambaPupil: イベントベースのアイトラッキングのための双方向選択リカレントモデル
- Authors: Zhong Wang, Zengyu Wan, Han Han, Bohao Liao, Yuliang Wu, Wei Zhai, Yang Cao, Zheng-jun Zha,
- Abstract要約: 事象に基づく視線追跡は、高時間分解能と低冗長性で非常に有望である。
点眼、固定、ササード、スムーズな追跡を含む眼球運動パターンの多様性と急激さは、眼球運動の局所化に重要な課題を提起する。
本稿では、文脈時空間情報を完全に活用するための双方向の長期シーケンスモデリングと時間変化状態選択機構を提案する。
- 参考スコア(独自算出の注目度): 50.26836546224782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event-based eye tracking has shown great promise with the high temporal resolution and low redundancy provided by the event camera. However, the diversity and abruptness of eye movement patterns, including blinking, fixating, saccades, and smooth pursuit, pose significant challenges for eye localization. To achieve a stable event-based eye-tracking system, this paper proposes a bidirectional long-term sequence modeling and time-varying state selection mechanism to fully utilize contextual temporal information in response to the variability of eye movements. Specifically, the MambaPupil network is proposed, which consists of the multi-layer convolutional encoder to extract features from the event representations, a bidirectional Gated Recurrent Unit (GRU), and a Linear Time-Varying State Space Module (LTV-SSM), to selectively capture contextual correlation from the forward and backward temporal relationship. Furthermore, the Bina-rep is utilized as a compact event representation, and the tailor-made data augmentation, called as Event-Cutout, is proposed to enhance the model's robustness by applying spatial random masking to the event image. The evaluation on the ThreeET-plus benchmark shows the superior performance of the MambaPupil, which secured the 1st place in CVPR'2024 AIS Event-based Eye Tracking challenge.
- Abstract(参考訳): イベントベースのアイトラッキングは、イベントカメラによって提供される高時間分解能と低冗長性で非常に有望である。
しかし、点眼、固定、サケード、スムーズな追跡を含む眼球運動パターンの多様性と急激な変化は、眼球運動の局所化に重大な課題をもたらす。
安定した事象に基づく視線追跡システムを実現するため,眼球運動の変動に応答し,時間的時間的情報を完全に活用する双方向の長期シーケンスモデリングと時間的状態選択機構を提案する。
具体的には、イベント表現から特徴を抽出する多層畳み込みエンコーダ、双方向GRU、LTV-SSM(Linear Time-Varying State Space Module)からなるMambaPupilネットワークを提案する。
さらに、Bina-repをコンパクトなイベント表現として利用し、イベント画像に空間ランダムマスキングを適用してモデルのロバスト性を高めるために、Event-Cutoutと呼ばれるテーラーメイドデータ拡張を提案する。
ThreeET-plusベンチマークの評価は、CVPR'2024 AISイベントベースのアイトラッキングチャレンジで1位を獲得したMambaPupilの優れた性能を示している。
関連論文リスト
- SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOTはイベントベースのマルチオブジェクトトラッカーである。
SpikeMOTはスパイクニューラルネットワークを使用して、オブジェクトに関連するイベントストリームからスパーステンポラルな特徴を抽出する。
論文 参考訳(メタデータ) (2023-09-29T05:13:43Z) - Dual Memory Aggregation Network for Event-Based Object Detection with
Learnable Representation [79.02808071245634]
イベントベースのカメラはバイオインスパイアされたセンサーで、各ピクセルの明るさ変化を非同期に捉える。
イベントストリームは、正極性と負極性の両方のためにx-y-t座標の格子に分割され、3次元テンソル表現として柱の集合が生成される。
長メモリは適応型convLSTMの隠れ状態に符号化され、短メモリはイベントピラー間の空間的時間的相関を計算することによってモデル化される。
論文 参考訳(メタデータ) (2023-03-17T12:12:41Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
本稿では,各トラックレットを連続ストリームとみなす新しいアプローチを提案する。
各タイムスタンプでは、現在のフレームだけがネットワークに送られ、メモリバンクに格納された複数フレームの履歴機能と相互作用する。
頑健な追跡のためのマルチフレーム機能の利用性を高めるために,コントラッシブシーケンス強化戦略を提案する。
論文 参考訳(メタデータ) (2023-03-14T02:58:27Z) - Recurrent Vision Transformers for Object Detection with Event Cameras [62.27246562304705]
本稿では,イベントカメラを用いた物体検出のための新しいバックボーンであるリカレントビジョントランス (RVT) を提案する。
RVTは、イベントベースのオブジェクト検出で最先端のパフォーマンスに到達するために、ゼロからトレーニングすることができる。
私たちの研究は、イベントベースのビジョンを超えた研究に役立ち得る効果的なデザイン選択に、新たな洞察をもたらします。
論文 参考訳(メタデータ) (2022-12-11T20:28:59Z) - RGB-Event Fusion for Moving Object Detection in Autonomous Driving [3.5397758597664306]
移動物体検出(MOD)は安全な自動運転を実現するための重要な視覚課題である。
センサ技術の最近の進歩、特にイベントカメラは、移動物体をより良くモデル化するための従来のカメラアプローチを自然に補完することができる。
我々は、より堅牢なMODを実現するために、2つの相補的モダリティを共同で活用する新しいRGB-Event fusion NetworkであるRENetを提案する。
論文 参考訳(メタデータ) (2022-09-17T12:59:08Z) - Asynchronous Optimisation for Event-based Visual Odometry [53.59879499700895]
イベントカメラは、低レイテンシと高ダイナミックレンジのために、ロボット知覚の新しい可能性を開く。
イベントベースビジュアル・オドメトリー(VO)に焦点をあてる
動作最適化のバックエンドとして非同期構造を提案する。
論文 参考訳(メタデータ) (2022-03-02T11:28:47Z) - Event-LSTM: An Unsupervised and Asynchronous Learning-based
Representation for Event-based Data [8.931153235278831]
イベントカメラは、アクティビティ駆動のバイオインスパイアされたビジョンセンサーです。
LSTM層からなる教師なしオートエンコーダアーキテクチャであるEvent-LSTMを提案する。
また、最先端のイベントをデノージングプロセスにメモリを導入することで、デノージングを前進させます。
論文 参考訳(メタデータ) (2021-05-10T09:18:52Z) - A Differentiable Recurrent Surface for Asynchronous Event-Based Data [19.605628378366667]
本研究では,Long Short-Term Memory (LSTM) セルのグリッドであるMatrix-LSTMを提案する。
既存の再構成手法と比較して,学習した事象表面は柔軟性と光フロー推定に優れていた。
N-Carsデータセット上でのイベントベースのオブジェクト分類の最先端性を改善する。
論文 参考訳(メタデータ) (2020-01-10T14:09:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。