Ethical-Lens: Curbing Malicious Usages of Open-Source Text-to-Image Models
- URL: http://arxiv.org/abs/2404.12104v1
- Date: Thu, 18 Apr 2024 11:38:25 GMT
- Title: Ethical-Lens: Curbing Malicious Usages of Open-Source Text-to-Image Models
- Authors: Yuzhu Cai, Sheng Yin, Yuxi Wei, Chenxin Xu, Weibo Mao, Felix Juefei-Xu, Siheng Chen, Yanfeng Wang,
- Abstract summary: We introduce Ethical-Lens, a framework designed to facilitate the value-aligned usage of text-to-image tools.
Ethical-Lens ensures value alignment in text-to-image models across toxicity and bias dimensions.
Our experiments reveal that Ethical-Lens enhances alignment capabilities to levels comparable with or superior to commercial models.
- Score: 51.69735366140249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The burgeoning landscape of text-to-image models, exemplified by innovations such as Midjourney and DALLE 3, has revolutionized content creation across diverse sectors. However, these advancements bring forth critical ethical concerns, particularly with the misuse of open-source models to generate content that violates societal norms. Addressing this, we introduce Ethical-Lens, a framework designed to facilitate the value-aligned usage of text-to-image tools without necessitating internal model revision. Ethical-Lens ensures value alignment in text-to-image models across toxicity and bias dimensions by refining user commands and rectifying model outputs. Systematic evaluation metrics, combining GPT4-V, HEIM, and FairFace scores, assess alignment capability. Our experiments reveal that Ethical-Lens enhances alignment capabilities to levels comparable with or superior to commercial models like DALLE 3, ensuring user-generated content adheres to ethical standards while maintaining image quality. This study indicates the potential of Ethical-Lens to ensure the sustainable development of open-source text-to-image tools and their beneficial integration into society. Our code is available at https://github.com/yuzhu-cai/Ethical-Lens.
Related papers
- On the Fairness, Diversity and Reliability of Text-to-Image Generative Models [49.60774626839712]
multimodal generative models have sparked critical discussions on their fairness, reliability, and potential for misuse.
We propose an evaluation framework designed to assess model reliability through their responses to perturbations in the embedding space.
Our method lays the groundwork for detecting unreliable, bias-injected models and retrieval of bias provenance.
arXiv Detail & Related papers (2024-11-21T09:46:55Z) - KITTEN: A Knowledge-Intensive Evaluation of Image Generation on Visual Entities [93.74881034001312]
We conduct a systematic study on the fidelity of entities in text-to-image generation models.
We focus on their ability to generate a wide range of real-world visual entities, such as landmark buildings, aircraft, plants, and animals.
Our findings reveal that even the most advanced text-to-image models often fail to generate entities with accurate visual details.
arXiv Detail & Related papers (2024-10-15T17:50:37Z) - MoralBench: Moral Evaluation of LLMs [34.43699121838648]
This paper introduces a novel benchmark designed to measure and compare the moral reasoning capabilities of large language models (LLMs)
We present the first comprehensive dataset specifically curated to probe the moral dimensions of LLM outputs.
Our methodology involves a multi-faceted approach, combining quantitative analysis with qualitative insights from ethics scholars to ensure a thorough evaluation of model performance.
arXiv Detail & Related papers (2024-06-06T18:15:01Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
Copyright law confers creators the exclusive rights to reproduce, distribute, and monetize their creative works.
Recent progress in text-to-image generation has introduced formidable challenges to copyright enforcement.
We introduce a novel pipeline that harmonizes CLIP, ChatGPT, and diffusion models to curate a dataset.
arXiv Detail & Related papers (2024-01-04T11:14:01Z) - Unpacking the Ethical Value Alignment in Big Models [46.560886177083084]
This paper provides an overview of the risks and challenges associated with big models, surveys existing AI ethics guidelines, and examines the ethical implications arising from the limitations of these models.
We introduce a novel conceptual paradigm for aligning the ethical values of big models and discuss promising research directions for alignment criteria, evaluation, and method.
arXiv Detail & Related papers (2023-10-26T16:45:40Z) - Denevil: Towards Deciphering and Navigating the Ethical Values of Large
Language Models via Instruction Learning [36.66806788879868]
Large Language Models (LLMs) have made unprecedented breakthroughs, yet their integration into everyday life might raise societal risks due to generated unethical content.
This work delves into ethical values utilizing Moral Foundation Theory.
arXiv Detail & Related papers (2023-10-17T07:42:40Z) - Applying Standards to Advance Upstream & Downstream Ethics in Large
Language Models [0.0]
This paper explores how AI-owners can develop safeguards for AI-generated content.
It draws from established codes of conduct and ethical standards in other content-creation industries.
arXiv Detail & Related papers (2023-06-06T08:47:42Z) - Aligning AI With Shared Human Values [85.2824609130584]
We introduce the ETHICS dataset, a new benchmark that spans concepts in justice, well-being, duties, virtues, and commonsense morality.
We find that current language models have a promising but incomplete ability to predict basic human ethical judgements.
Our work shows that progress can be made on machine ethics today, and it provides a steppingstone toward AI that is aligned with human values.
arXiv Detail & Related papers (2020-08-05T17:59:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.