論文の概要: Real-World Efficient Blind Motion Deblurring via Blur Pixel Discretization
- arxiv url: http://arxiv.org/abs/2404.12168v1
- Date: Thu, 18 Apr 2024 13:22:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 19:11:44.556513
- Title: Real-World Efficient Blind Motion Deblurring via Blur Pixel Discretization
- Title(参考訳): ブラー画素の離散化による実世界の高効率ブラインド運動の劣化
- Authors: Insoo Kim, Jae Seok Choi, Geonseok Seo, Kinam Kwon, Jinwoo Shin, Hyong-Euk Lee,
- Abstract要約: 我々は,デブロアリング(回帰)タスクを,画素の離散化と離散連続変換タスクに分解する。
具体的には,ぼやけた画素を識別して画像残差誤差を生成し,連続的な形状に変換する。
- 参考スコア(独自算出の注目度): 45.20189929583484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As recent advances in mobile camera technology have enabled the capability to capture high-resolution images, such as 4K images, the demand for an efficient deblurring model handling large motion has increased. In this paper, we discover that the image residual errors, i.e., blur-sharp pixel differences, can be grouped into some categories according to their motion blur type and how complex their neighboring pixels are. Inspired by this, we decompose the deblurring (regression) task into blur pixel discretization (pixel-level blur classification) and discrete-to-continuous conversion (regression with blur class map) tasks. Specifically, we generate the discretized image residual errors by identifying the blur pixels and then transform them to a continuous form, which is computationally more efficient than naively solving the original regression problem with continuous values. Here, we found that the discretization result, i.e., blur segmentation map, remarkably exhibits visual similarity with the image residual errors. As a result, our efficient model shows comparable performance to state-of-the-art methods in realistic benchmarks, while our method is up to 10 times computationally more efficient.
- Abstract(参考訳): 近年のモバイルカメラ技術の進歩により、4K画像などの高解像度画像を撮影できるようになり、大きな動きを扱う効率的なデブロアリングモデルの必要性が高まっている。
本稿では,画像残差,すなわちぼやけたシャープな画素差が,その動きのぼやけタイプや近傍の画素の複雑度に応じて,いくつかのカテゴリに分類できることを見出した。
このことから,デブロアリング(リグレス)タスクをピクセルレベルのボケ分類(ピクセルレベルのボケ分類)と離散から連続への変換(ボケクラスマップによるリグレス)タスクに分解する。
具体的には、ぼやけた画素を識別して離散化された画像残差誤差を生成し、連続的な形式に変換する。
ここでは,画像残差と視覚的類似性を顕著に示し,識別結果,すなわち,ぼかし分割マップが得られた。
その結果,本手法は計算効率を最大10倍に向上する一方,実時間ベンチマークでは最先端手法に匹敵する性能を示した。
関連論文リスト
- Multi-Feature Aggregation in Diffusion Models for Enhanced Face Super-Resolution [6.055006354743854]
超解像を生成するために,複数の低画質画像から抽出した特徴と組み合わせた低解像度画像を利用するアルゴリズムを開発した。
他のアルゴリズムとは異なり、我々のアプローチは属性情報を明示的に提供せずに顔の特徴を復元する。
これは、高解像度画像と低解像度画像を組み合わせて、より信頼性の高い超高解像度画像を生成するコンディショナーとして初めて使用される。
論文 参考訳(メタデータ) (2024-08-27T20:08:33Z) - Restoring Images in Adverse Weather Conditions via Histogram Transformer [75.74328579778049]
悪天候による画像の復元に有効なヒストグラム変換器(Histoformer)を提案する。
これはヒストグラム自己アテンション( histogram self-attention)と呼ばれるメカニズムで、空間的特徴を強度ベースのビンに分類し、セグメント化する。
ヒストグラムの自己アテンションを高めるために,従来のコンボリューションが類似画素上で動作できるようにするダイナミックレンジ・コンボリューションを提案する。
論文 参考訳(メタデータ) (2024-07-14T11:59:22Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
デジタル画像法医学は、画像認証と操作のローカライゼーションにおいて重要な役割を果たす。
本稿では,画素不整合アーチファクトの解析を通じて,一般化されたロバストな操作ローカライゼーションモデルを提案する。
実験により,本手法は固有の画素不整合偽指紋を抽出することに成功した。
論文 参考訳(メタデータ) (2023-09-30T02:54:51Z) - Multi-View Object Pose Refinement With Differentiable Renderer [22.040014384283378]
本稿では,合成データの学習方法の改善に焦点をあてた,新しい多視点6 DoFオブジェクトポーズ改善手法を提案する。
これはDPOD検出器に基づいており、各フレーム内のモデル頂点と画像画素との間の密度の高い2D-3D対応を生成する。
合成および実データに基づいて訓練された最先端の手法と比較して優れた性能を報告した。
論文 参考訳(メタデータ) (2022-07-06T17:02:22Z) - PixelPyramids: Exact Inference Models from Lossless Image Pyramids [58.949070311990916]
Pixel-Pyramidsは、画像画素の関節分布を符号化するスケール特異的表現を用いたブロック自動回帰手法である。
様々な画像データセット、特に高解像度データに対する密度推定の最先端結果が得られる。
CelebA-HQ 1024 x 1024 では,フローベースモデルの並列化よりもサンプリング速度が優れているにもかかわらず,密度推定値がベースラインの 44% に向上することが観察された。
論文 参考訳(メタデータ) (2021-10-17T10:47:29Z) - Single Image Non-uniform Blur Kernel Estimation via Adaptive Basis
Decomposition [1.854931308524932]
本研究では,高密度な非一様運動ボケ推定のための一般非パラメトリックモデルを提案する。
提案手法は,既存の不均一な動きのぼかし推定の限界を克服することを示す。
論文 参考訳(メタデータ) (2021-02-01T18:02:31Z) - High-Resolution Image Inpainting with Iterative Confidence Feedback and
Guided Upsampling [122.06593036862611]
既存の画像塗装法は、実アプリケーションで大きな穴を扱う際に、しばしばアーティファクトを生成する。
本稿では,フィードバック機構を備えた反復インペイント手法を提案する。
実験により,本手法は定量評価と定性評価の両方において既存手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2020-05-24T13:23:45Z) - Self-Supervised Linear Motion Deblurring [112.75317069916579]
深層畳み込みニューラルネットワークは、画像の劣化の最先端技術である。
本稿では,自己監督型動作遅延に対する識別可能なreblurモデルを提案する。
我々の実験は、自己監督された単一画像の劣化が本当に実現可能であることを実証した。
論文 参考訳(メタデータ) (2020-02-10T20:15:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。