論文の概要: EuSQuAD: Automatically Translated and Aligned SQuAD2.0 for Basque
- arxiv url: http://arxiv.org/abs/2404.12177v2
- Date: Tue, 4 Jun 2024 15:43:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 11:37:14.977852
- Title: EuSQuAD: Automatically Translated and Aligned SQuAD2.0 for Basque
- Title(参考訳): EuSQuAD: バスク語の自動翻訳およびアライメントSQuAD2.0
- Authors: Aitor García-Pablos, Naiara Perez, Montse Cuadros, Jaione Bengoetxea,
- Abstract要約: この作業は、SQuAD2.0をバスク語に自動翻訳・調整する最初のイニシアチブであるEuSQuADを提示する。
我々は、EuSQuADをトレーニングデータとしてサポートした広範囲な定性分析とQA実験により、EuSQuADの価値を実証する。
- 参考スコア(独自算出の注目度): 0.4499833362998487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread availability of Question Answering (QA) datasets in English has greatly facilitated the advancement of the Natural Language Processing (NLP) field. However, the scarcity of such resources for minority languages, such as Basque, poses a substantial challenge for these communities. In this context, the translation and alignment of existing QA datasets plays a crucial role in narrowing this technological gap. This work presents EuSQuAD, the first initiative dedicated to automatically translating and aligning SQuAD2.0 into Basque, resulting in more than 142k QA examples. We demonstrate EuSQuAD's value through extensive qualitative analysis and QA experiments supported with EuSQuAD as training data. These experiments are evaluated with a new human-annotated dataset.
- Abstract(参考訳): 質問応答(QA)データセットが英語で広く利用できるようになったことで、自然言語処理(NLP)分野の進歩が大いに促進された。
しかしバスク語のような少数言語に対するそのような資源の不足は、これらのコミュニティにとって重大な課題となっている。
この文脈では、既存のQAデータセットの翻訳とアライメントがこの技術的ギャップを狭める上で重要な役割を果たす。
この研究は、SQuAD2.0をバスク語に自動翻訳しアライメントするための最初のイニシアチブであるEuSQuADを提示する。
我々は、EuSQuADをトレーニングデータとしてサポートした広範囲な定性分析とQA実験により、EuSQuADの価値を実証する。
これらの実験は、新しい人間の注釈付きデータセットを用いて評価される。
関連論文リスト
- Datasets for Multilingual Answer Sentence Selection [59.28492975191415]
ヨーロッパ5言語(フランス語、ドイツ語、イタリア語、ポルトガル語、スペイン語)でAS2のための新しい高品質データセットを導入する。
その結果、我々のデータセットは、堅牢で強力な多言語AS2モデルを作成する上で重要なものであることが示唆された。
論文 参考訳(メタデータ) (2024-06-14T16:50:29Z) - Can a Multichoice Dataset be Repurposed for Extractive Question Answering? [52.28197971066953]
我々は,Multiple-choice Question answering (MCQA)のために設計されたBandarkar et al.(Bandarkar et al., 2023)を再利用した。
本稿では,英語と現代標準アラビア語(MSA)のためのガイドラインと並列EQAデータセットを提案する。
私たちの目標は、ベレベレにおける120以上の言語変異に対して、他者が私たちのアプローチを適応できるようにすることです。
論文 参考訳(メタデータ) (2024-04-26T11:46:05Z) - Building Efficient and Effective OpenQA Systems for Low-Resource Languages [17.64851283209797]
低コストで効率的な OpenQA システムを低リソース環境向けに開発できることを示す。
主な要素は、機械翻訳されたラベル付きデータセットと関連する非構造化知識ソースを用いた、弱い監視である。
我々は,SQuAD2.0の機械翻訳であるSQuAD-TRを提案する。
論文 参考訳(メタデータ) (2024-01-07T22:11:36Z) - SEMQA: Semi-Extractive Multi-Source Question Answering [94.04430035121136]
本稿では,複数ソースを半抽出的に要約することで,複数の質問に答える新しいQAタスクを提案する。
この種の最初のデータセットであるQuoteSumを作成し、自然および生成された質問に対する人間による半抽出的な回答を提示する。
論文 参考訳(メタデータ) (2023-11-08T18:46:32Z) - Evaluating and Modeling Attribution for Cross-Lingual Question Answering [80.4807682093432]
この研究は、言語間質問応答の属性を初めて研究したものである。
我々は、5つの言語でデータを収集し、最先端の言語間QAシステムの属性レベルを評価する。
回答のかなりの部分は、検索されたどのパスにも帰属しないことがわかった。
論文 参考訳(メタデータ) (2023-05-23T17:57:46Z) - PAXQA: Generating Cross-lingual Question Answering Examples at Training
Scale [53.92008514395125]
PAXQA(クロスリンガル(x)QAのアノテーションの計画)は、クロスリンガルQAを2段階に分解する。
本稿では、並列ビットから制約されたエンティティを抽出する語彙制約機械翻訳の新たな利用法を提案する。
これらのデータセットに基づいて微調整されたモデルは、複数の抽出されたQAデータセット上で、先行合成データ生成モデルより優れていることを示す。
論文 参考訳(メタデータ) (2023-04-24T15:46:26Z) - KenSwQuAD -- A Question Answering Dataset for Swahili Low Resource
Language [0.0]
このデータセットは、Swahili低リソース言語の生のストーリーテキストから注釈付けされている。
QAデータセットは、インターネット検索やダイアログシステムのようなタスクのための自然言語の機械理解にとって重要である。
この研究は、Kencorpusプロジェクトによって収集されたスワヒリのテキストからQAペアを定式化するためにアノテータを雇った。
論文 参考訳(メタデータ) (2022-05-04T23:53:23Z) - Towards More Equitable Question Answering Systems: How Much More Data Do
You Need? [15.401330338654203]
ステップバックして、既存のリソースを最大限に活用して、多くの言語でQAシステムを開発するためのアプローチを研究します。
具体的には、自動翻訳とコンテキスト-問合せ-問合せ-問合せ-問合せ-問合せ-問合せ-問合せ-問合せ-問合せ-問合せ-問合せ-問合せ-問合せの順に拡張された数ショットアプローチの有効性を評価するために、広範囲に分析を行った。
我々は、QAデータセットやシステムの言語カバレッジを高めることを目的として、固定アノテーション予算をより活用するための将来のデータセット開発活動を提案する。
論文 参考訳(メタデータ) (2021-05-28T21:32:04Z) - GermanQuAD and GermanDPR: Improving Non-English Question Answering and
Passage Retrieval [2.5621280373733604]
我々は13,722組の抽出質問/回答ペアのデータセットである GermanQuAD を提示する。
GermanQuADで訓練された抽出QAモデルは、多言語モデルを大幅に上回る。
論文 参考訳(メタデータ) (2021-04-26T17:34:31Z) - Template-Based Question Generation from Retrieved Sentences for Improved
Unsupervised Question Answering [98.48363619128108]
擬似学習データを用いてQAモデルを訓練するための教師なしアプローチを提案する。
関連した検索文に簡単なテンプレートを適用してQA学習のための質問を生成すると、元の文脈文よりも、下流QAのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2020-04-24T17:57:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。