The quantum gravity seeds for laws of nature
- URL: http://arxiv.org/abs/2404.12248v1
- Date: Thu, 18 Apr 2024 15:12:52 GMT
- Title: The quantum gravity seeds for laws of nature
- Authors: Vincent Lam, Daniele Oriti,
- Abstract summary: We discuss the challenges that the standard (Hu) accounts of laws face within the framework of quantum gravity where space and time may not be fundamental.
We highlight the roles of quantum entanglement, quantum transition amplitudes and quantum causal histories.
These features also stress the fruitful overlap between quantum gravity and quantum information theory.
- Score: 0.31570310818616687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We discuss the challenges that the standard (Humean and non-Humean) accounts of laws face within the framework of quantum gravity where space and time may not be fundamental. This paper identifies core (meta)physical features that cut across a number of quantum gravity approaches and formalisms and that provide seeds for articulating updated conceptions that could account for QG laws not involving any spatio-temporal notions. To this aim, we will in particular highlight the constitutive roles of quantum entanglement, quantum transition amplitudes and quantum causal histories. These features also stress the fruitful overlap between quantum gravity and quantum information theory.
Related papers
- Quantum coarsening and collective dynamics on a programmable quantum simulator [27.84599956781646]
We experimentally study collective dynamics across a (2+1)D Ising quantum phase transition.
By deterministically preparing and following the evolution of ordered domains, we show that the coarsening is driven by the curvature of domain boundaries.
We quantitatively explore these phenomena and further observe long-lived oscillations of the order parameter, corresponding to an amplitude (Higgs) mode.
arXiv Detail & Related papers (2024-07-03T16:29:12Z) - To be or not to be, but where? [0.0]
Traditional approaches associate quantum systems with classical ones localized in spacetime.
canonical linearized quantum gravity disrupts this framework by preventing the formation of gauge-in-variant local algebras.
This presents a major obstacle for modeling early universe cosmology, gravity-entanglement experiments, and poses a significant roadblock toward a comprehensive theory of quantum gravity.
arXiv Detail & Related papers (2024-05-31T17:22:39Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Unraveling the Mystery of Quantum Measurement with A New Space-Time Approach to Relativistic Quantum Mechanics [9.116661570248171]
Quantum measurement is a fundamental concept in the field of quantum mechanics.
Despite its significance, four fundamental issues continue to pose significant challenges to the broader application of quantum measurement.
We employ a new space-time approach to relativistic quantum mechanics to address these issues systematically.
arXiv Detail & Related papers (2023-06-01T13:25:08Z) - System-environment dynamics of GHZ-like states in noninertial frames [14.401323451758975]
Quantum coherence, quantum entanglement and quantum nonlocality are important resources in quantum information precessing.
We study the dynamical evolution of the three-qubit GHZ-like states in non-inertial frame when one and/or two qubits undergo decoherence.
arXiv Detail & Related papers (2022-12-30T03:36:48Z) - Complementarity-Entanglement Tradeoff in Quantum Gravity [0.0]
Quantization of the gravity remains one of the most important, yet extremely illusive, challenges at the heart of modern physics.
Recently, it has been discovered that gravitationally-induced entanglement, tailored in the interferometric frameworks, can be used to witness the quantum nature of the gravity.
arXiv Detail & Related papers (2022-05-04T09:34:10Z) - Gravity, Quantum Fields and Quantum Information: Problems with classical
channel and stochastic theories [0.0]
We show that the notion of interactions mediated by an information channel is not, in general, equivalent to the treatment of interactions by quantum field theory.
Second, we point out that in general one cannot replace a quantum field by that of classical sources, or mock up the effects of quantum fluctuations by classical noises.
arXiv Detail & Related papers (2022-02-06T14:55:46Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Quantum Entropic Causal Inference [30.939150842529052]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
arXiv Detail & Related papers (2021-02-23T15:51:34Z) - One-shot quantum error correction of classical and quantum information [10.957528713294874]
Quantum error correction (QEC) is one of the central concepts in quantum information science.
We provide a form of capacity theorem for both classical and quantum information.
We show that a demonstration of QEC by short random quantum circuits is feasible.
arXiv Detail & Related papers (2020-11-02T01:24:59Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.