論文の概要: Guided Discrete Diffusion for Electronic Health Record Generation
- arxiv url: http://arxiv.org/abs/2404.12314v1
- Date: Thu, 18 Apr 2024 16:50:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 18:52:16.614109
- Title: Guided Discrete Diffusion for Electronic Health Record Generation
- Title(参考訳): 電子カルテ生成のためのガイド付き離散拡散
- Authors: Zixiang Chen, Jun Han, Yongqian Li, Yiwen Kou, Eran Halperin, Robert E. Tillman, Quanquan Gu,
- Abstract要約: EHRは、病気の進行予測、臨床試験設計、健康経済学と結果研究など、多くの計算医学の応用を可能にする中心的なデータソースである。
幅広いユーザビリティにもかかわらず、その繊細な性質はプライバシーと秘密の懸念を高め、潜在的なユースケースを制限する。
これらの課題に対処するために,人工的かつ現実的なEHRを合成するための生成モデルの利用について検討する。
- 参考スコア(独自算出の注目度): 47.129056768385084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electronic health records (EHRs) are a pivotal data source that enables numerous applications in computational medicine, e.g., disease progression prediction, clinical trial design, and health economics and outcomes research. Despite wide usability, their sensitive nature raises privacy and confidentially concerns, which limit potential use cases. To tackle these challenges, we explore the use of generative models to synthesize artificial, yet realistic EHRs. While diffusion-based methods have recently demonstrated state-of-the-art performance in generating other data modalities and overcome the training instability and mode collapse issues that plague previous GAN-based approaches, their applications in EHR generation remain underexplored. The discrete nature of tabular medical code data in EHRs poses challenges for high-quality data generation, especially for continuous diffusion models. To this end, we introduce a novel tabular EHR generation method, EHR-D3PM, which enables both unconditional and conditional generation using the discrete diffusion model. Our experiments demonstrate that EHR-D3PM significantly outperforms existing generative baselines on comprehensive fidelity and utility metrics while maintaining less membership vulnerability risks. Furthermore, we show EHR-D3PM is effective as a data augmentation method and enhances performance on downstream tasks when combined with real data.
- Abstract(参考訳): EHR(Electronic Health Record)は、計算医学、病気の進行予測、臨床試験設計、健康経済学と成果研究など、多くの応用を可能にする中心的なデータソースである。
幅広いユーザビリティにもかかわらず、その繊細な性質はプライバシーと秘密の懸念を高め、潜在的なユースケースを制限する。
これらの課題に対処するために,人工的かつ現実的なEHRを合成するための生成モデルの利用について検討する。
拡散法は近年,他のデータモダリティの生成や,従来のGANベースのアプローチを悩ませるトレーニング不安定性やモード崩壊問題に克服する上で,最先端のパフォーマンスを実証している。
EHRにおける表型医療コードデータの離散的性質は、特に連続拡散モデルにおいて、高品質なデータ生成に課題をもたらす。
そこで本研究では, 離散拡散モデルを用いた非条件および条件付き生成が可能な新しい表付きEHR生成手法であるEHR-D3PMを提案する。
EHR-D3PMは, 包括的信頼度と実用性指標において, 既存の生成基準を著しく上回り, メンバーシップの脆弱性リスクの低減を図っている。
さらに,EHR-D3PMはデータ拡張手法として有効であり,実データと組み合わせることで下流タスクの性能を向上させることを示す。
関連論文リスト
- Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Reliable Generation of Privacy-preserving Synthetic Electronic Health Record Time Series via Diffusion Models [4.240899165468488]
電子健康記録(Electronic Health Records, EHRs)は、患者レベルの豊富なデータソースであり、医療データ分析に有用なリソースを提供する。
しかしながら、プライバシー上の懸念はしばしばEHRへのアクセスを制限し、下流の分析を妨げる。
本研究では,現実的かつプライバシに保護された合成ERH時系列を効率的に生成することで,これらの課題を克服することを目的とする。
論文 参考訳(メタデータ) (2023-10-23T18:56:01Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - EHRDiff: Exploring Realistic EHR Synthesis with Diffusion Models [8.799590232822752]
プライバシー上の懸念は、研究者のための高品質で大規模なEHRデータへのアクセスを制限している。
近年の研究では、生成モデリング技術による現実的なEHRデータの合成が研究されている。
本研究では, EHRデータ合成における拡散モデルの可能性について検討し, 新たな手法である EHRDiff を提案する。
論文 参考訳(メタデータ) (2023-03-10T02:15:58Z) - Generating Synthetic Mixed-type Longitudinal Electronic Health Records
for Artificial Intelligent Applications [9.374416143268892]
EHR-M-GAN (Generative Adversarial Network, GAN) は、EHRデータを合成する。
EHR-M-GANは,141,488名の患者を対象とし,3つの公用集中治療単位データベース上で検証した。
論文 参考訳(メタデータ) (2021-12-22T17:17:34Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
GAN(Generative Adversarial Network)は、高忠実度画像を合成するために、訓練に十分なデータを必要とする。
近年の研究では、差別者の過度な適合により、限られたデータでGANを訓練することは困難であることが示されている。
本稿では,APA (Adaptive Pseudo Augmentation) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-12T18:13:45Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
本研究は,医療施設への患者訪問数を予測することにより,医療サービスの需要を予測することを目的とする。
SNSformerは、特定の帰納バイアスを設計し、EHRデータの特異な特徴を考慮に入れた、注意のない逐次モデルである。
本研究は, 各種患者集団を対象とした医療利用予測の修正における, 注意力のないモデルと自己指導型事前訓練の有望な可能性について考察した。
論文 参考訳(メタデータ) (2021-08-31T08:23:56Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。