Point-In-Context: Understanding Point Cloud via In-Context Learning
- URL: http://arxiv.org/abs/2404.12352v1
- Date: Thu, 18 Apr 2024 17:32:32 GMT
- Title: Point-In-Context: Understanding Point Cloud via In-Context Learning
- Authors: Mengyuan Liu, Zhongbin Fang, Xia Li, Joachim M. Buhmann, Xiangtai Li, Chen Change Loy,
- Abstract summary: We introduce Point-In-Context (PIC), a novel framework for 3D point cloud understanding via in-context learning.
We address the technical challenge of effectively extending masked point modeling to 3D point clouds by introducing a Joint Sampling module.
We propose two novel training strategies, In-Context Labeling and In-Context Enhancing, forming an extended version of PIC named Point-In-Context-Segmenter (PIC-S)
- Score: 67.20277182808992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the emergence of large-scale models trained on diverse datasets, in-context learning has emerged as a promising paradigm for multitasking, notably in natural language processing and image processing. However, its application in 3D point cloud tasks remains largely unexplored. In this work, we introduce Point-In-Context (PIC), a novel framework for 3D point cloud understanding via in-context learning. We address the technical challenge of effectively extending masked point modeling to 3D point clouds by introducing a Joint Sampling module and proposing a vanilla version of PIC called Point-In-Context-Generalist (PIC-G). PIC-G is designed as a generalist model for various 3D point cloud tasks, with inputs and outputs modeled as coordinates. In this paradigm, the challenging segmentation task is achieved by assigning label points with XYZ coordinates for each category; the final prediction is then chosen based on the label point closest to the predictions. To break the limitation by the fixed label-coordinate assignment, which has poor generalization upon novel classes, we propose two novel training strategies, In-Context Labeling and In-Context Enhancing, forming an extended version of PIC named Point-In-Context-Segmenter (PIC-S), targeting improving dynamic context labeling and model training. By utilizing dynamic in-context labels and extra in-context pairs, PIC-S achieves enhanced performance and generalization capability in and across part segmentation datasets. PIC is a general framework so that other tasks or datasets can be seamlessly introduced into our PIC through a unified data format. We conduct extensive experiments to validate the versatility and adaptability of our proposed methods in handling a wide range of tasks and segmenting multi-datasets. Our PIC-S is capable of generalizing unseen datasets and performing novel part segmentation by customizing prompts.
Related papers
- Flex: End-to-End Text-Instructed Visual Navigation with Foundation Models [59.892436892964376]
We investigate the minimal data requirements and architectural adaptations necessary to achieve robust closed-loop performance with vision-based control policies.
Our findings are synthesized in Flex (Fly-lexically), a framework that uses pre-trained Vision Language Models (VLMs) as frozen patch-wise feature extractors.
We demonstrate the effectiveness of this approach on quadrotor fly-to-target tasks, where agents trained via behavior cloning successfully generalize to real-world scenes.
arXiv Detail & Related papers (2024-10-16T19:59:31Z) - Explore In-Context Learning for 3D Point Cloud Understanding [71.20912026561484]
We introduce a novel framework, named Point-In-Context, designed especially for in-context learning in 3D point clouds.
We propose the Joint Sampling module, carefully designed to work in tandem with the general point sampling operator.
We conduct extensive experiments to validate the versatility and adaptability of our proposed methods in handling a wide range of tasks.
arXiv Detail & Related papers (2023-06-14T17:53:21Z) - Point-GCC: Universal Self-supervised 3D Scene Pre-training via
Geometry-Color Contrast [9.14535402695962]
Geometry and color information provided by point clouds are crucial for 3D scene understanding.
We propose a universal 3D scene pre-training framework via Geometry-Color Contrast (Point-GCC)
Point-GCC aligns geometry and color information using a Siamese network.
arXiv Detail & Related papers (2023-05-31T07:44:03Z) - AIMS: All-Inclusive Multi-Level Segmentation [93.5041381700744]
We propose a new task, All-Inclusive Multi-Level (AIMS), which segments visual regions into three levels: part, entity, and relation.
We also build a unified AIMS model through multi-dataset multi-task training to address the two major challenges of annotation inconsistency and task correlation.
arXiv Detail & Related papers (2023-05-28T16:28:49Z) - CLR-GAM: Contrastive Point Cloud Learning with Guided Augmentation and
Feature Mapping [12.679625717350113]
We present CLR-GAM, a contrastive learning-based framework with Guided Augmentation (GA) for efficient dynamic exploration strategy.
We empirically demonstrate that the proposed approach achieves state-of-the-art performance on both simulated and real-world 3D point cloud datasets.
arXiv Detail & Related papers (2023-02-28T04:38:52Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
We present a richly-annotated 3D point cloud dataset for multiple outdoor scene understanding tasks.
The dataset has been point-wisely annotated with both hierarchical and instance-based labels.
We formulate a hierarchical learning problem for 3D point cloud segmentation and propose a measurement evaluating consistency across various hierarchies.
arXiv Detail & Related papers (2020-08-11T19:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.