論文の概要: SOHES: Self-supervised Open-world Hierarchical Entity Segmentation
- arxiv url: http://arxiv.org/abs/2404.12386v1
- Date: Thu, 18 Apr 2024 17:59:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 18:42:29.760252
- Title: SOHES: Self-supervised Open-world Hierarchical Entity Segmentation
- Title(参考訳): SOHES: 自己管理型のオープンワールド階層エンティティセグメンテーション
- Authors: Shengcao Cao, Jiuxiang Gu, Jason Kuen, Hao Tan, Ruiyi Zhang, Handong Zhao, Ani Nenkova, Liang-Yan Gui, Tong Sun, Yu-Xiong Wang,
- Abstract要約: この研究は、人間のアノテーションを必要としない新しいアプローチであるSOHES(Self-supervised Open World Hierarchical Entities)を提示する。
視覚的特徴クラスタリングにより高品質な擬似ラベルを生成し,教師同士の学習によって擬似ラベルの雑音を補正する。
学習データとして生画像を用いることにより,自己監督型オープンワールドセグメンテーションにおける前例のない性能を実現する。
- 参考スコア(独自算出の注目度): 82.45303116125021
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Open-world entity segmentation, as an emerging computer vision task, aims at segmenting entities in images without being restricted by pre-defined classes, offering impressive generalization capabilities on unseen images and concepts. Despite its promise, existing entity segmentation methods like Segment Anything Model (SAM) rely heavily on costly expert annotators. This work presents Self-supervised Open-world Hierarchical Entity Segmentation (SOHES), a novel approach that eliminates the need for human annotations. SOHES operates in three phases: self-exploration, self-instruction, and self-correction. Given a pre-trained self-supervised representation, we produce abundant high-quality pseudo-labels through visual feature clustering. Then, we train a segmentation model on the pseudo-labels, and rectify the noises in pseudo-labels via a teacher-student mutual-learning procedure. Beyond segmenting entities, SOHES also captures their constituent parts, providing a hierarchical understanding of visual entities. Using raw images as the sole training data, our method achieves unprecedented performance in self-supervised open-world segmentation, marking a significant milestone towards high-quality open-world entity segmentation in the absence of human-annotated masks. Project page: https://SOHES.github.io.
- Abstract(参考訳): 新たなコンピュータビジョンタスクとしてのオープンワールドエンティティセグメンテーションは、事前に定義されたクラスに制限されることなく、イメージ内のエンティティをセグメンテーションすることを目的としている。
その約束にもかかわらず、Segment Anything Model (SAM)のような既存のエンティティセグメンテーションメソッドは、高価な専門家アノテータに大きく依存しています。
この研究は、人間のアノテーションを必要としない新しいアプローチであるSOHES(Self-supervised Open-world Hierarchical Entity Segmentation)を提示する。
SOHESは、自己探索、自己指導、自己補正の3段階で動作する。
事前学習された自己教師型表現を前提として,視覚的特徴クラスタリングにより高品質な擬似ラベルを生成する。
そこで我々は,擬似ラベルのセグメンテーションモデルを訓練し,教師と学生の相互学習によって擬似ラベルの雑音を補正する。
セグメンテーションエンティティ以外にも、SOHESは構成部品をキャプチャし、視覚エンティティの階層的な理解を提供する。
本手法は, 自己監督型オープンワールドセグメンテーションにおける前例のない性能を実現し, 人為的なマスクがない場合に, 高品質なオープンワールドセグメンテーションに向けた重要なマイルストーンとなる。
プロジェクトページ: https://SOHES.github.io.com
関連論文リスト
- Boosting Unsupervised Semantic Segmentation with Principal Mask Proposals [15.258631373740686]
教師なしセマンティックセグメンテーションは、画像コーパス内のグローバルセマンティックカテゴリをアノテーションなしで識別することで、画像を自動的に意味のある領域に分割することを目的としている。
そこで,PriMaP - 主マスク提案 - 特徴表現に基づいてイメージを意味的に意味のあるマスクに分解する。
これにより、予測最大化アルゴリズムであるPriMaPs-EMを用いて、クラスプロトタイプをPriMaPsに適合させることで、教師なしセマンティックセマンティックセマンティクスを実現することができる。
論文 参考訳(メタデータ) (2024-04-25T17:58:09Z) - Unsupervised Universal Image Segmentation [59.0383635597103]
本稿では,Unsupervised Universal Model (U2Seg) を提案する。
U2Segは、自己教師付きモデルを利用して、これらのセグメンテーションタスクの擬似意味ラベルを生成する。
次に、これらの擬似意味ラベル上でモデルを自己学習し、かなりの性能向上をもたらす。
論文 参考訳(メタデータ) (2023-12-28T18:59:04Z) - Exploring Open-Vocabulary Semantic Segmentation without Human Labels [76.15862573035565]
我々は、既存の事前学習された視覚言語モデル(VL)を利用して意味的セグメンテーションモデルを訓練するZeroSegを提案する。
ZeroSegは、VLモデルで学んだ視覚概念をセグメントトークンの集合に蒸留することでこれを克服し、それぞれが対象画像の局所化領域を要約する。
提案手法は,他のゼロショットセグメンテーション法と比較して,同じトレーニングデータを用いた場合と比較して,最先端性能を実現する。
論文 参考訳(メタデータ) (2023-06-01T08:47:06Z) - Learning Hierarchical Image Segmentation For Recognition and By Recognition [39.712584686731574]
本稿では,階層的なセグメンタを認識プロセスに統合し,画像レベルの認識目的のみに基づいてモデル全体を訓練し,適応させることを提案する。
我々は,認識とともに自由な階層的セグメンテーションを学習し,その基盤となるだけでなく,認識の向上にも寄与する部分間関係を自動的に発見する。
特に,このモデル(ラベルなし1Mイメージネット画像でトレーニング)は,PartImageNetオブジェクトセグメンテーションのmIoUにおいて,SAM(11Mイメージマスクでトレーニング)を絶対8%上回っている。
論文 参考訳(メタデータ) (2022-10-01T16:31:44Z) - FreeSOLO: Learning to Segment Objects without Annotations [191.82134817449528]
我々は,単純なインスタンスセグメンテーションメソッドSOLO上に構築された自己教師型インスタンスセグメンテーションフレームワークであるFreeSOLOを紹介する。
また,本手法では,複雑なシーンからオブジェクトを教師なしで検出する,新たなローカライズ対応事前学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-24T16:31:44Z) - Open-World Entity Segmentation [70.41548013910402]
我々は、意味圏ラベルを考慮せずに、画像内のすべての視覚的エンティティをセグメント化することを目的として、Entity(ES)と呼ばれる新しいイメージセグメンテーションタスクを導入する。
意味的に意味のある全てのセグメントは、等しく分類なしのエンティティとして扱われる。
1) 複数のデータセットをマージしてラベルの衝突を解決することなく大規模なトレーニングセットを形成すること、2) 1つのデータセットでトレーニングされたモデルが、目に見えないドメインを持つ他のデータセットに対して、例外的にうまく一般化することができること、である。
論文 参考訳(メタデータ) (2021-07-29T17:59:05Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
トレーニング中に見られないクラスをセグメント化できることは、ディープラーニングにおいて重要な技術的課題です。
事前のゼロラベルセマンティクスセグメンテーションは、ビジュアル・セマンティクスの埋め込みや生成モデルを学ぶことによってこのタスクにアプローチする。
本研究では,同一画像の異なる増分から生じる擬似ラベルの交点を取り出し,ノイズの多い擬似ラベルをフィルタリングする整合性正規化器を提案する。
論文 参考訳(メタデータ) (2021-04-21T14:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。