Sup3r: A Semi-Supervised Algorithm for increasing Sparsity, Stability, and Separability in Hierarchy Of Time-Surfaces architectures
- URL: http://arxiv.org/abs/2404.12402v2
- Date: Tue, 30 Apr 2024 22:37:21 GMT
- Title: Sup3r: A Semi-Supervised Algorithm for increasing Sparsity, Stability, and Separability in Hierarchy Of Time-Surfaces architectures
- Authors: Marco Rasetto, Himanshu Akolkar, Ryad Benosman,
- Abstract summary: Sup3r enhances sparsity, stability, and separability in the HOTS networks.
Sup3r learns class-informative patterns, mitigates confounding features, and reduces the number of processed events.
Preliminary results on N-MNIST demonstrate that Sup3r achieves comparable accuracy to similarly sized Artificial Neural Networks trained with back-propagation.
- Score: 3.533874233403883
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The Hierarchy Of Time-Surfaces (HOTS) algorithm, a neuromorphic approach for feature extraction from event data, presents promising capabilities but faces challenges in accuracy and compatibility with neuromorphic hardware. In this paper, we introduce Sup3r, a Semi-Supervised algorithm aimed at addressing these challenges. Sup3r enhances sparsity, stability, and separability in the HOTS networks. It enables end-to-end online training of HOTS networks replacing external classifiers, by leveraging semi-supervised learning. Sup3r learns class-informative patterns, mitigates confounding features, and reduces the number of processed events. Moreover, Sup3r facilitates continual and incremental learning, allowing adaptation to data distribution shifts and learning new tasks without forgetting. Preliminary results on N-MNIST demonstrate that Sup3r achieves comparable accuracy to similarly sized Artificial Neural Networks trained with back-propagation. This work showcases the potential of Sup3r to advance the capabilities of HOTS networks, offering a promising avenue for neuromorphic algorithms in real-world applications.
Related papers
- Generative Adversarial Networks for Imputing Sparse Learning Performance [3.0350058108125646]
This paper proposes using the Generative Adversarial Imputation Networks (GAIN) framework to impute sparse learning performance data.
Our customized GAIN-based method computational process imputes sparse data in a 3D tensor space.
This finding enhances comprehensive learning data modeling and analytics in AI-based education.
arXiv Detail & Related papers (2024-07-26T17:09:48Z) - Masked Generative Extractor for Synergistic Representation and 3D Generation of Point Clouds [6.69660410213287]
We propose an innovative framework called Point-MGE to explore the benefits of deeply integrating 3D representation learning and generative learning.
In shape classification, Point-MGE achieved an accuracy of 94.2% (+1.0%) on the ModelNet40 dataset and 92.9% (+5.5%) on the ScanObjectNN dataset.
Experimental results also confirmed that Point-MGE can generate high-quality 3D shapes in both unconditional and conditional settings.
arXiv Detail & Related papers (2024-06-25T07:57:03Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with
Pre-trained Vision-Language Models [62.663113296987085]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.
We introduce two novel components: the Redundant Feature Eliminator (RFE) and the Spatial Noise Compensator (SNC)
Considering the imbalance in existing 3D datasets, we also propose new evaluation metrics that offer a more nuanced assessment of a 3D FSCIL model.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - The Trifecta: Three simple techniques for training deeper
Forward-Forward networks [0.0]
We propose a collection of three techniques that synergize exceptionally well and drastically improve the Forward-Forward algorithm on deeper networks.
Our experiments demonstrate that our models are on par with similarly structured, backpropagation-based models in both training speed and test accuracy on simple datasets.
arXiv Detail & Related papers (2023-11-29T22:44:32Z) - Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural
Networks [49.808194368781095]
We show that three-layer neural networks have provably richer feature learning capabilities than two-layer networks.
This work makes progress towards understanding the provable benefit of three-layer neural networks over two-layer networks in the feature learning regime.
arXiv Detail & Related papers (2023-05-11T17:19:30Z) - Desire Backpropagation: A Lightweight Training Algorithm for Multi-Layer
Spiking Neural Networks based on Spike-Timing-Dependent Plasticity [13.384228628766236]
Spiking neural networks (SNNs) are a viable alternative to conventional artificial neural networks.
We present desire backpropagation, a method to derive the desired spike activity of all neurons, including the hidden ones.
We trained three-layer networks to classify MNIST and Fashion-MNIST images and reached an accuracy of 98.41% and 87.56%, respectively.
arXiv Detail & Related papers (2022-11-10T08:32:13Z) - 3D Convolutional with Attention for Action Recognition [6.238518976312625]
Current action recognition methods use computationally expensive models for learning-temporal dependencies of the action.
This paper proposes a deep neural network architecture for learning such dependencies consisting of a 3D convolutional layer, fully connected layers and attention layer.
The method first learns spatial features and temporal of actions through 3D-CNN, and then the attention temporal mechanism helps the model to locate attention to essential features.
arXiv Detail & Related papers (2022-06-05T15:12:57Z) - Train your classifier first: Cascade Neural Networks Training from upper
layers to lower layers [54.47911829539919]
We develop a novel top-down training method which can be viewed as an algorithm for searching for high-quality classifiers.
We tested this method on automatic speech recognition (ASR) tasks and language modelling tasks.
The proposed method consistently improves recurrent neural network ASR models on Wall Street Journal, self-attention ASR models on Switchboard, and AWD-LSTM language models on WikiText-2.
arXiv Detail & Related papers (2021-02-09T08:19:49Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.