Generative Adversarial Networks for Imputing Sparse Learning Performance
- URL: http://arxiv.org/abs/2407.18875v1
- Date: Fri, 26 Jul 2024 17:09:48 GMT
- Title: Generative Adversarial Networks for Imputing Sparse Learning Performance
- Authors: Liang Zhang, Mohammed Yeasin, Jionghao Lin, Felix Havugimana, Xiangen Hu,
- Abstract summary: This paper proposes using the Generative Adversarial Imputation Networks (GAIN) framework to impute sparse learning performance data.
Our customized GAIN-based method computational process imputes sparse data in a 3D tensor space.
This finding enhances comprehensive learning data modeling and analytics in AI-based education.
- Score: 3.0350058108125646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning performance data, such as correct or incorrect responses to questions in Intelligent Tutoring Systems (ITSs) is crucial for tracking and assessing the learners' progress and mastery of knowledge. However, the issue of data sparsity, characterized by unexplored questions and missing attempts, hampers accurate assessment and the provision of tailored, personalized instruction within ITSs. This paper proposes using the Generative Adversarial Imputation Networks (GAIN) framework to impute sparse learning performance data, reconstructed into a three-dimensional (3D) tensor representation across the dimensions of learners, questions and attempts. Our customized GAIN-based method computational process imputes sparse data in a 3D tensor space, significantly enhanced by convolutional neural networks for its input and output layers. This adaptation also includes the use of a least squares loss function for optimization and aligns the shapes of the input and output with the dimensions of the questions-attempts matrices along the learners' dimension. Through extensive experiments on six datasets from various ITSs, including AutoTutor, ASSISTments and MATHia, we demonstrate that the GAIN approach generally outperforms existing methods such as tensor factorization and other generative adversarial network (GAN) based approaches in terms of imputation accuracy. This finding enhances comprehensive learning data modeling and analytics in AI-based education.
Related papers
- Data Augmentation for Sparse Multidimensional Learning Performance Data Using Generative AI [17.242331892899543]
Learning performance data describe correct and incorrect answers or problem-solving attempts in adaptive learning.
Learning performance data tend to be highly sparse (80%(sim)90% missing observations) in most real-world applications due to adaptive item selection.
This article proposes a systematic framework for augmenting learner data to address data sparsity in learning performance data.
arXiv Detail & Related papers (2024-09-24T00:25:07Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - 3DG: A Framework for Using Generative AI for Handling Sparse Learner
Performance Data From Intelligent Tutoring Systems [22.70004627901319]
We introduce the 3DG framework (3-Dimensional tensor for Densification and Generation), a novel approach combining tensor factorization with advanced generative models.
The framework effectively generated scalable, personalized simulations of learning performance.
arXiv Detail & Related papers (2024-01-29T22:34:01Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Feature Extraction for Machine Learning-based Intrusion Detection in IoT
Networks [6.6147550436077776]
This paper aims to discover whether Feature Reduction (FR) and Machine Learning (ML) techniques can be generalised across various datasets.
The detection accuracy of three Feature Extraction (FE) algorithms; Principal Component Analysis (PCA), Auto-encoder (AE), and Linear Discriminant Analysis (LDA) is evaluated.
arXiv Detail & Related papers (2021-08-28T23:52:18Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
We propose a self-supervised LiDAR odometry method, dubbed SelfVoxeLO, to tackle these two difficulties.
Specifically, we propose a 3D convolution network to process the raw LiDAR data directly, which extracts features that better encode the 3D geometric patterns.
We evaluate our method's performances on two large-scale datasets, i.e., KITTI and Apollo-SouthBay.
arXiv Detail & Related papers (2020-10-19T09:23:39Z) - Improving the Performance of Fine-Grain Image Classifiers via Generative
Data Augmentation [0.5161531917413706]
We develop Data Augmentation from Proficient Pre-Training of Robust Generative Adrial Networks (DAPPER GAN)
DAPPER GAN is an ML analytics support tool that automatically generates novel views of training images.
We experimentally evaluate this technique on the Stanford Cars dataset, demonstrating improved vehicle make and model classification accuracy.
arXiv Detail & Related papers (2020-08-12T15:29:11Z) - Injective Domain Knowledge in Neural Networks for Transprecision
Computing [17.300144121921882]
This paper studies the improvements that can be obtained by integrating prior knowledge when dealing with a non-trivial learning task.
The results clearly show that ML models exploiting problem-specific information outperform the purely data-driven ones, with an average accuracy improvement around 38%.
arXiv Detail & Related papers (2020-02-24T12:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.