Benchmarking changepoint detection algorithms on cardiac time series
- URL: http://arxiv.org/abs/2404.12408v1
- Date: Tue, 16 Apr 2024 20:48:50 GMT
- Title: Benchmarking changepoint detection algorithms on cardiac time series
- Authors: Ayse Cakmak, Erik Reinertsen, Shamim Nemati, Gari D. Clifford,
- Abstract summary: This work presents a principled approach for selecting a changepoint detection algorithm for a specific task, such as disease classification.
All algorithms were applied to real data (cardiac time series of 22 patients with REM-behavior disorder (RBD) and 15 healthy controls) using the parameters selected on artificial data.
- Score: 3.397233888137007
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The pattern of state changes in a biomedical time series can be related to health or disease. This work presents a principled approach for selecting a changepoint detection algorithm for a specific task, such as disease classification. Eight key algorithms were compared, and the performance of each algorithm was evaluated as a function of temporal tolerance, noise, and abnormal conduction (ectopy) on realistic artificial cardiovascular time series data. All algorithms were applied to real data (cardiac time series of 22 patients with REM-behavior disorder (RBD) and 15 healthy controls) using the parameters selected on artificial data. Finally, features were derived from the detected changepoints to classify RBD patients from healthy controls using a K-Nearest Neighbors approach. On artificial data, Modified Bayesian Changepoint Detection algorithm provided superior positive predictive value for state change identification while Recursive Mean Difference Maximization (RMDM) achieved the highest true positive rate. For the classification task, features derived from the RMDM algorithm provided the highest leave one out cross validated accuracy of 0.89 and true positive rate of 0.87. Automatically detected changepoints provide useful information about subject's physiological state which cannot be directly observed. However, the choice of change point detection algorithm depends on the nature of the underlying data and the downstream application, such as a classification task. This work represents the first time change point detection algorithms have been compared in a meaningful way and utilized in a classification task, which demonstrates the effect of changepoint algorithm choice on application performance.
Related papers
- Reproduction of scan B-statistic for kernel change-point detection algorithm [10.49860279555873]
Change-point detection has garnered significant attention due to its broad range of applications.
In this paper, we reproduce a recently proposed online change-point detection algorithm based on an efficient kernel-based scan B-statistic.
Our numerical experiments demonstrate that the scan B-statistic consistently delivers superior performance.
arXiv Detail & Related papers (2024-08-23T15:12:31Z) - A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive
Coding Networks [65.34977803841007]
Predictive coding networks are neuroscience-inspired models with roots in both Bayesian statistics and neuroscience.
We show how by simply changing the temporal scheduling of the update rule for the synaptic weights leads to an algorithm that is much more efficient and stable than the original one.
arXiv Detail & Related papers (2022-11-16T00:11:04Z) - Bayesian Online Change Point Detection for Baseline Shifts [0.0]
In time series data analysis, detecting change points on a real-time basis (online) is of great interest in many areas, such as finance, environmental monitoring, and medicine.
One promising means to achieve this is the Bayesian online change point detection (BOCPD) algorithm, which has been successfully adopted in particular cases in which the time series of interest has a fixed baseline.
We have found that the algorithm struggles when the baseline irreversibly shifts from its initial state. This is because with the original BOCPD algorithm, the sensitivity with which a change point can be detected is degraded if the data points are fluctuating at locations
arXiv Detail & Related papers (2022-01-07T04:44:25Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Optimal Sequential Detection of Signals with Unknown Appearance and
Disappearance Points in Time [64.26593350748401]
The paper addresses a sequential changepoint detection problem, assuming that the duration of change may be finite and unknown.
We focus on a reliable maximin change detection criterion of maximizing the minimal probability of detection in a given time (or space) window.
The FMA algorithm is applied to detecting faint streaks of satellites in optical images.
arXiv Detail & Related papers (2021-02-02T04:58:57Z) - Real-Time Anomaly Detection in Edge Streams [49.26098240310257]
We propose MIDAS, which focuses on detecting microcluster anomalies, or suddenly arriving groups of suspiciously similar edges.
We further propose MIDAS-F, to solve the problem by which anomalies are incorporated into the algorithm's internal states.
Experiments show that MIDAS-F has significantly higher accuracy than MIDAS.
arXiv Detail & Related papers (2020-09-17T17:59:27Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
Change point detection (CPD) aims to locate abrupt property changes in time series data.
Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal.
We employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD.
arXiv Detail & Related papers (2020-08-21T15:03:21Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - A Graph-constrained Changepoint Detection Approach for ECG Segmentation [5.209323879611983]
We introduce a novel graph-based optimal changepoint detection (GCCD) method for reliable detection of R-peak positions without employing any preprocessing step.
Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed method achieves overall sensitivity Sen = 99.76, positive predictivity PPR = 99.68, and detection error rate DER = 0.55.
arXiv Detail & Related papers (2020-04-24T23:41:41Z) - An Evaluation of Change Point Detection Algorithms [6.03459316244618]
We present a data set specifically designed for the evaluation of change point detection algorithms.
Each series was annotated by five human annotators to provide ground truth on the presence and location of change points.
Next, we present a benchmark study where 14 algorithms are evaluated on each of the time series in the data set.
arXiv Detail & Related papers (2020-03-13T12:23:41Z) - Generalization of Change-Point Detection in Time Series Data Based on
Direct Density Ratio Estimation [1.929039244357139]
We show how existing algorithms can be generalized using various binary classification and regression models.
The algorithms are tested on several synthetic and real-world datasets.
arXiv Detail & Related papers (2020-01-17T15:45:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.