Recoil heating of a dielectric particle illuminated by a linearly polarized plane wave within the Rayleigh regime
- URL: http://arxiv.org/abs/2404.12459v2
- Date: Wed, 15 May 2024 13:22:59 GMT
- Title: Recoil heating of a dielectric particle illuminated by a linearly polarized plane wave within the Rayleigh regime
- Authors: Mohammad Ali Abbassi,
- Abstract summary: We derive the fluctuating force acted upon the particle arising from the fluctuations of the electromagnetic fields.
Recoil heating imposes fundamental limitations in levitated optomechanics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the recoil heating phenomenon experienced by a dielectric spherical particle when it interacts with a linearly polarized plane wave within the Rayleigh regime. We derive the fluctuating force acted upon the particle arising from the fluctuations of the electromagnetic fields. Our derivations reveal that the spectral density of the fluctuating force along the propagation direction is $7\hbar \omega_0 P_{\mathrm{scat}}/5c^2$. Meanwhile, along the direction of the electric and magnetic fields, it is $\hbar \omega_0 P_{\mathrm{scat}}/5c^2$ and $2\hbar \omega_0 P_{\mathrm{scat}}/5c^2$, respectively. Here, $P_{\mathrm{scat}}$ denotes the power scattered by the particle, $\hbar\omega_0$ represents the energy of a photon, and $c$ is the speed of light. Recoil heating imposes fundamental limitations in levitated optomechanics, constraining the minimum temperatures achievable in cooling processes, the coherence time of the system, and the sensitivity of force measurements.
Related papers
- Electron Paramagnetic Resonance spectroscopy of a scheelite crystal
using microwave photon counting [0.0]
Counting the microwave photons emitted by an ensemble of electron spins when they relax radiatively has been introduced as a sensitive new method for electron paramagnetic resonance spectroscopy at millikelvin temperatures.
Here, we apply this spin fluorescence method to a scheelite crystal of CaWO4.
arXiv Detail & Related papers (2024-02-05T15:30:56Z) - Dynamics of molecular rotors in bulk superfluid helium [68.8204255655161]
We report on the experimental study of the laser-induced rotation of helium dimers inside the superfluid $4mathrmHe$ bath at variable temperature.
The observed temperature dependence suggests a non-equilibrium evolution of the quantum bath, accompanied by the emission of the wave of second sound.
arXiv Detail & Related papers (2023-04-08T01:22:19Z) - Dynamical metasurfaces: electromagnetic properties and instabilities [0.0]
I analyse the electromagnetic properties of dynamical metasurfaces and find two critical phenomena.
The first is the Casimir-induced instability of a deformable metallic film.
The second is vCerenkov radiation in the vacuum from a time-varying, corrugated surface.
arXiv Detail & Related papers (2021-12-20T08:04:43Z) - High-resolution 'magic'-field spectroscopy on trapped polyatomic
molecules [62.997667081978825]
Rapid progress in cooling and trapping of molecules has enabled first experiments on high resolution spectroscopy of trapped diatomic molecules.
Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom.
arXiv Detail & Related papers (2021-10-21T15:46:17Z) - Band strutures of hybrid graphene quantum dots with magnetic flux [0.0]
We study the band structures of hybrid graphene quantum dots subject to a magnetic flux and electrostatic potential.
For the valley $K'$, it is found that the magnetic flux strongly acts by decreasing the gap and shifting energy levels away from zero radius with some oscillations.
arXiv Detail & Related papers (2021-07-30T12:04:13Z) - Motion-induced radiation due to an atom in the presence of a graphene
plane [62.997667081978825]
We study the motion-induced radiation due to the non-relativistic motion of an atom in the presence of a static graphene plate.
We show that the effect of the plate is to increase the probability of emission when the atom is near the plate and oscillates along a direction perpendicular to it.
arXiv Detail & Related papers (2021-04-15T14:15:23Z) - Quantum thermodynamics of coronal heating [77.34726150561087]
convection in the stellar photosphere generates plasma waves by an irreversible process akin to Zeldovich superradiance and sonic booms.
Energy is mostly carried by megahertz Alfven waves that scatter elastically until they reach a height at which they can dissipate via mode conversion.
arXiv Detail & Related papers (2021-03-15T22:27:31Z) - The Stark effect in superfluid $^4$He with relative flows [0.0]
Stark-type effect is observed in superfluid $4$He in presence of relative laminar flows.
Line of absorption/radiation is observed in the EM spectrum, the frequency of which - 180 GHz - corresponds to the roton minimum.
arXiv Detail & Related papers (2020-09-13T16:26:32Z) - Self-force on moving electric and magnetic dipoles: dipole radiation,
Vavilov-\v{C}erenkov radiation, friction with a conducting surface, and the
Einstein-Hopf effect [6.767887239634509]
In vacuum there is no net force on such a particle.
Because of loss of mass by the particle due to radiation, the self-force precisely cancels this inertial effect.
If the particle is moving in a homogeneous medium faster than the speed of light in the medium, Vavilov-vCerenkov radiation results.
arXiv Detail & Related papers (2020-06-27T14:48:03Z) - Force and acceleration sensing with optically levitated nanogram masses
at microkelvin temperatures [57.72546394254112]
This paper demonstrates cooling of the center-of-mass motion of 10 $mu$m-diameter optically levitated silica spheres to an effective temperature of $50pm22 mu$K.
It is shown that under these conditions the spheres remain stably trapped at pressures of $sim 10-7$ mbar with no active cooling for periods longer than a day.
arXiv Detail & Related papers (2020-01-29T16:20:35Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.