Motion-induced radiation due to an atom in the presence of a graphene
plane
- URL: http://arxiv.org/abs/2104.07479v2
- Date: Thu, 20 May 2021 18:53:08 GMT
- Title: Motion-induced radiation due to an atom in the presence of a graphene
plane
- Authors: C\'esar D. Fosco, Fernando C. Lombardo, and Francisco D. Mazzitelli
- Abstract summary: We study the motion-induced radiation due to the non-relativistic motion of an atom in the presence of a static graphene plate.
We show that the effect of the plate is to increase the probability of emission when the atom is near the plate and oscillates along a direction perpendicular to it.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the motion-induced radiation due to the non-relativistic motion of
an atom, coupled to the vacuum electromagnetic field by an electric dipole
term, in the presence of a static graphene plate. After computing the
probability of emission for an accelerated atom in empty space, we evaluate the
corrections due to the presence of the plate. We show that the effect of the
plate is to increase the probability of emission when the atom is near the
plate and oscillates along a direction perpendicular to it. On the contrary,
for parallel oscillations, there is a suppression. We also evaluate the quantum
friction on an atom moving at constant velocity parallel to the plate. We show
that there is a threshold for quantum friction: friction occurs only when the
velocity of the atom is larger than the Fermi velocity of the electrons in
graphene.
Related papers
- On the spatial dependence of Casimir friction in graphene [0.0]
We study the spatial properties of the Casimir friction phenomenon for an atom moving at a non-relativistic constant velocity parallel to a planar graphene sheet.
arXiv Detail & Related papers (2023-08-28T19:44:00Z) - Foldy-Wouthuysen transformation and multiwave states of a graphene
electron in external fields and free (2+1)-space [91.3755431537592]
Graphene electrons in a static electric field can exist in the multiwave Hermite-Gauss states defining non-spreading coherent beams.
It is proven that the Hermite-Gauss beams exist even in the free space.
arXiv Detail & Related papers (2023-05-07T17:03:00Z) - Quantum friction in the presence of a perfectly conducting plate [4.031388559887924]
A neutral but polarizable particle at rest near a perfectly conducting plate feels a force normal to the surface of the plate, which tends to pull the particle towards the plate.
This is the well-known Casimir-Polder force, which has long been theoretically proposed and experimentally observed.
arXiv Detail & Related papers (2023-03-02T03:54:30Z) - Motion induced excitation and electromagnetic radiation from an atom
facing a thin mirror [62.997667081978825]
We evaluate the probability of (de-)excitation and photon emission from a neutral, moving, non-relativistic atom, coupled to a quantum electromagnetic field and in the presence of a thin, perfectly conducting plane ("mirror")
Results extend to a more realistic model, where the would-be electron was described by a scalar variable, coupled to an (also scalar) vacuum field.
arXiv Detail & Related papers (2022-07-06T20:54:59Z) - Electromagnetically induced walking [0.0]
We show coherent periodic motion of single atoms in position space removing the Doppler broadening with strong coupling between the atom and a traveling light.
These results may have potential applications for the construction of atomtronic circuits.
arXiv Detail & Related papers (2022-02-10T03:28:02Z) - Motion induced excitation and radiation from an atom facing a mirror [0.0]
We study quantum dissipative effects due to the non-relativistic, bounded, accelerated motion of a single neutral atom.
We compute the spontaneous emission rate of an oscillating atom that is initially in an excited state.
arXiv Detail & Related papers (2022-01-04T20:31:19Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Gravitational waves affect vacuum entanglement [68.8204255655161]
The entanglement harvesting protocol is an operational way to probe vacuum entanglement.
Using this protocol, it is demonstrated that while the transition probability of an individual atom is unaffected by the presence of a gravitational wave, the entanglement harvested by two atoms depends sensitively on the frequency of the gravitational wave.
This suggests that the entanglement signature left by a gravitational wave may be useful in characterizing its properties, and potentially useful in exploring the gravitational-wave memory effect and gravitational-wave induced decoherence.
arXiv Detail & Related papers (2020-06-19T18:01:04Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Shaking photons from the vacuum: acceleration radiation from vibrating
atoms [0.0]
We show that merely by shaking the atom, in simple harmonic motion, can have the same effect.
We propose a circuit-QED potential implementation that yields transition rates of $sim 10-4,rm Hz$, which may be detectable experimentally.
arXiv Detail & Related papers (2020-03-04T18:56:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.