論文の概要: Neural Methods for Amortized Inference
- arxiv url: http://arxiv.org/abs/2404.12484v4
- Date: Thu, 10 Oct 2024 04:30:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-11 14:29:01.414072
- Title: Neural Methods for Amortized Inference
- Title(参考訳): Amortized Inferenceのためのニューラルメソッド
- Authors: Andrew Zammit-Mangion, Matthew Sainsbury-Dale, Raphaël Huser,
- Abstract要約: 統計的推論のシミュレーションに基づく手法は、過去50年間で劇的に進化し、技術進歩のペースを維持している。
結果として得られるツールは、初期設定コストの後、高速フィードフォワード操作による迅速な推論を可能にするという意味で、償却される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Simulation-based methods for statistical inference have evolved dramatically over the past 50 years, keeping pace with technological advancements. The field is undergoing a new revolution as it embraces the representational capacity of neural networks, optimization libraries and graphics processing units for learning complex mappings between data and inferential targets. The resulting tools are amortized, in the sense that, after an initial setup cost, they allow rapid inference through fast feed-forward operations. In this article we review recent progress in the context of point estimation, approximate Bayesian inference, summary-statistic construction, and likelihood approximation. We also cover software, and include a simple illustration to showcase the wide array of tools available for amortized inference and the benefits they offer over Markov chain Monte Carlo methods. The article concludes with an overview of relevant topics and an outlook on future research directions.
- Abstract(参考訳): 統計的推論のシミュレーションに基づく手法は、過去50年間で劇的に進化し、技術進歩のペースを維持している。
この分野は、データと推論ターゲットの間の複雑なマッピングを学習するためのニューラルネットワーク、最適化ライブラリ、グラフィック処理ユニットの表現能力を受け入れることで、新たな革命を経験している。
結果として得られるツールは、初期設定コストの後、高速フィードフォワード操作による迅速な推論を可能にするという意味で、償却される。
本稿では, 点推定, 近似ベイズ推定, 要約統計的構成, 確率近似の文脈における最近の進歩を概観する。
また、ソフトウェアをカバーし、MarkovチェーンのMonte Carloメソッドに対して、償却推論に利用可能な幅広いツールと、それらが提供するメリットを示すための簡単なイラストも提供します。
この記事は、関連するトピックの概要と今後の研究方向性の展望で締めくくっている。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Dreaming Learning [41.94295877935867]
機械学習システムに新しい情報を導入することは、以前に格納されたデータに干渉する可能性がある。
スチュアート・カウフマンの随伴可能性の概念に着想を得た学習アルゴリズムを提案する。
ニューラルネットワークは、予想と異なる統計特性を持つデータシーケンスを円滑に受け入れ、統合することを前提としている。
論文 参考訳(メタデータ) (2024-10-23T09:17:31Z) - A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learningはニューラルネットワークを"時間とともに"学習するための新しい統合フレームワーク
i)外部ソフトウェアソルバを必要とせずに統合できる、(ii)フィードフォワードおよびリカレントネットワークにおける勾配に基づく学習の概念を一般化する、(iii)新しい視点で開放する、という微分方程式に基づいている。
論文 参考訳(メタデータ) (2024-09-18T14:57:13Z) - State-Space Modeling in Long Sequence Processing: A Survey on Recurrence in the Transformer Era [59.279784235147254]
このサーベイは、シーケンシャルなデータ処理の反復モデルに基づく最新のアプローチの詳細な概要を提供する。
新たなイメージは、標準のバックプロパゲーション・オブ・タイムから外れた学習アルゴリズムによって構成される、新しいルートを考える余地があることを示唆している。
論文 参考訳(メタデータ) (2024-06-13T12:51:22Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Hybrid Predictive Coding: Inferring, Fast and Slow [62.997667081978825]
本稿では,反復型と償却型の両方を原則的に組み合わせたハイブリッド予測符号化ネットワークを提案する。
我々は,本モデルが本質的に不確実性に敏感であり,最小計算費用を用いて正確な信念を得るためにバランスを適応的にバランスさせることを実証した。
論文 参考訳(メタデータ) (2022-04-05T12:52:45Z) - Conditional Variational Autoencoder for Learned Image Reconstruction [5.487951901731039]
本研究では,未知画像の後部分布を問合せ観測で近似する新しいフレームワークを開発する。
暗黙のノイズモデルと先行処理を処理し、データ生成プロセス(フォワード演算子)を組み込み、学習された再構成特性は異なるデータセット間で転送可能である。
論文 参考訳(メタデータ) (2021-10-22T10:02:48Z) - Bayesian graph convolutional neural networks via tempered MCMC [0.41998444721319217]
畳み込みニューラルネットワークのようなディープラーニングモデルは、画像やマルチメディアタスクに長い間適用されてきた。
最近では、グラフで表現できる非構造化データにもっと注意が払われている。
これらのタイプのデータは、健康と医学、ソーシャルネットワーク、および研究データリポジトリでよく見られます。
論文 参考訳(メタデータ) (2021-04-17T04:03:25Z) - Closed Loop Neural-Symbolic Learning via Integrating Neural Perception,
Grammar Parsing, and Symbolic Reasoning [134.77207192945053]
従来の手法は強化学習アプローチを用いてニューラルシンボリックモデルを学ぶ。
我々は,脳神経知覚と記号的推論を橋渡しする前に,textbfgrammarモデルをテキストシンボリックとして導入する。
本稿では,トップダウンのヒューマンライクな学習手順を模倣して誤りを伝播する新しいtextbfback-searchアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-11T17:42:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。