論文の概要: TrajDeleter: Enabling Trajectory Forgetting in Offline Reinforcement Learning Agents
- arxiv url: http://arxiv.org/abs/2404.12530v1
- Date: Thu, 18 Apr 2024 22:23:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 16:34:43.364488
- Title: TrajDeleter: Enabling Trajectory Forgetting in Offline Reinforcement Learning Agents
- Title(参考訳): TrajDeleter: オフライン強化学習エージェントにおける軌道フォーミングの実現
- Authors: Chen Gong, Kecen Li, Jin Yao, Tianhao Wang,
- Abstract要約: 本稿では、オフラインRLエージェントのための軌道学習のための最初の実践的アプローチであるTrajdeleterを提唱する。
Trajdeleterのキーとなるアイデアは、エージェントをガイドして、未学習の軌跡に関連する状態に遭遇した際のパフォーマンス低下を示すことである。
6つのオフラインRLアルゴリズムと3つのタスクで実施された大規模な実験は、トラジデレターがスクラッチから再トレーニングするのに必要な時間の約1.5%しか必要としていないことを示した。
- 参考スコア(独自算出の注目度): 10.798271657186492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) trains an agent from experiences interacting with the environment. In scenarios where online interactions are impractical, offline RL, which trains the agent using pre-collected datasets, has become popular. While this new paradigm presents remarkable effectiveness across various real-world domains, like healthcare and energy management, there is a growing demand to enable agents to rapidly and completely eliminate the influence of specific trajectories from both the training dataset and the trained agents. To meet this problem, this paper advocates Trajdeleter, the first practical approach to trajectory unlearning for offline RL agents. The key idea of Trajdeleter is to guide the agent to demonstrate deteriorating performance when it encounters states associated with unlearning trajectories. Simultaneously, it ensures the agent maintains its original performance level when facing other remaining trajectories. Additionally, we introduce Trajauditor, a simple yet efficient method to evaluate whether Trajdeleter successfully eliminates the specific trajectories of influence from the offline RL agent. Extensive experiments conducted on six offline RL algorithms and three tasks demonstrate that Trajdeleter requires only about 1.5% of the time needed for retraining from scratch. It effectively unlearns an average of 94.8% of the targeted trajectories yet still performs well in actual environment interactions after unlearning. The replication package and agent parameters are available online.
- Abstract(参考訳): 強化学習(RL)は、環境と相互作用する経験からエージェントを訓練する。
オンラインインタラクションが現実的でないシナリオでは、事前にコンパイルされたデータセットを使用してエージェントをトレーニングするオフラインRLが人気を集めている。
この新しいパラダイムは、医療やエネルギー管理など、さまざまな現実世界の領域で顕著な効果を示す一方で、トレーニングデータセットとトレーニングされたエージェントの両方からの特定のトラジェクトリの影響を、エージェントが迅速かつ完全に排除する必要性が高まっている。
この問題に対処するために、オフラインRLエージェントの軌道未学習のための最初の実践的アプローチであるTrajdeleterを提唱する。
Trajdeleterのキーとなるアイデアは、エージェントを誘導して、未学習の軌跡に関連する状態に遭遇した際のパフォーマンス低下を示すことである。
同時に、他のトラジェクトリに直面するとき、エージェントが元のパフォーマンスレベルを維持する。
さらに、TrajdeleterがオフラインのRLエージェントから影響の特定の軌跡をうまく除去するかどうかを簡易かつ効率的な評価方法であるTrajauditorを導入する。
6つのオフラインRLアルゴリズムと3つのタスクで実施された大規模な実験は、トラジデレターがスクラッチから再トレーニングするのに必要な時間の約1.5%しか必要としていないことを示した。
目標軌道の94.8%を効果的に解き放つが、未学習の後も実際の環境相互作用は良好である。
レプリケーションパッケージとエージェントパラメータはオンラインで利用できる。
関連論文リスト
- Solving Offline Reinforcement Learning with Decision Tree Regression [0.0]
本研究は, オフライン強化学習問題に対して, 回帰タスクとして再検討することで, 新たなアプローチを提案する。
我々は、リターン条件付きとリターン重み付き決定ツリーポリシーの2つの異なるフレームワークを紹介します。
オフラインRLに対するこの改定されたアプローチに固有の単純化にもかかわらず、我々のエージェントは、少なくとも確立された手法と同等の性能を示す。
論文 参考訳(メタデータ) (2024-01-21T23:50:46Z) - Leveraging Optimal Transport for Enhanced Offline Reinforcement Learning
in Surgical Robotic Environments [4.2569494803130565]
我々は,少数の高品質な専門家によるデモンストレーションを用いて,オフラインの軌道に報酬を割り当てるための革新的なアルゴリズムを導入する。
このアプローチは、手作りの報酬の必要性を回避し、ポリシー学習に膨大なデータセットを活用する可能性を解き放つ。
論文 参考訳(メタデータ) (2023-10-13T03:39:15Z) - Using Offline Data to Speed-up Reinforcement Learning in Procedurally
Generated Environments [11.272582555795989]
本研究では, エージェントがオフラインデータをトラジェクトリ形式で活用して, 手続き的に生成した環境におけるサンプル効率を向上させることができるかを検討した。
1)オンラインRLトレーニングの前にポリシーを事前学習し、(2)オフラインデータからオンラインRLとILでポリシーを同時に訓練する。
論文 参考訳(メタデータ) (2023-04-18T16:23:15Z) - Adaptive Behavior Cloning Regularization for Stable Offline-to-Online
Reinforcement Learning [80.25648265273155]
オフライン強化学習は、固定データセットから学習することで、環境と対話することなくエージェントの動作を学ぶことができる。
オンラインの微調整中、オフラインからオンラインデータへの突然の分散シフトにより、事前訓練されたエージェントのパフォーマンスが急速に低下する可能性がある。
エージェントの性能と訓練安定性に基づいて,オンラインファインチューニングにおける行動クローンの損失を適応的に評価することを提案する。
実験の結果,提案手法はD4RLベンチマークにおいて,最先端のオフライン-オンライン強化学習性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-10-25T09:08:26Z) - Retrieval-Augmented Reinforcement Learning [63.32076191982944]
過去の経験のデータセットを最適な行動にマップするために、ネットワークをトレーニングします。
検索プロセスは、現在のコンテキストで有用なデータセットから情報を取得するために訓練される。
検索強化R2D2はベースラインR2D2エージェントよりもかなり高速に学習し,より高いスコアを得ることを示す。
論文 参考訳(メタデータ) (2022-02-17T02:44:05Z) - Plan Better Amid Conservatism: Offline Multi-Agent Reinforcement
Learning with Actor Rectification [74.10976684469435]
オフライン強化学習(RL)アルゴリズムは、直接マルチエージェント設定に転送することができる。
本稿では,この重要な課題に対処するために,Actor Rectification (OMAR) を用いたオフラインマルチエージェント RL を提案する。
OMARはマルチエージェント連続制御ベンチマークにおける最先端性能と強いベースラインを著しく上回る。
論文 参考訳(メタデータ) (2021-11-22T13:27:42Z) - Offline Meta-Reinforcement Learning with Online Self-Supervision [66.42016534065276]
適応ポリシをメタトレーニングするための報酬付きオフラインデータを用いたハイブリッドオフラインメタRLアルゴリズムを提案する。
提案手法では,オフラインデータを用いて報酬関数の分布を学習し,さらにオンラインデータに対する自己監督型報酬ラベルにサンプリングする。
追加データと自己生成報酬を用いることで、エージェントの一般化能力が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2021-07-08T17:01:32Z) - Offline-to-Online Reinforcement Learning via Balanced Replay and
Pessimistic Q-Ensemble [135.6115462399788]
深いオフライン強化学習により、オフラインデータセットから強力なロボットエージェントをトレーニングすることが可能になった。
状態-作用分布シフトは、微調整中に厳しいブートストラップエラーを引き起こす可能性がある。
本稿では,オンライン上で遭遇したサンプルを優先しながら,ほぼ政治的なサンプルの使用を奨励するバランスの取れたリプレイ方式を提案する。
論文 参考訳(メタデータ) (2021-07-01T16:26:54Z) - Believe What You See: Implicit Constraint Approach for Offline
Multi-Agent Reinforcement Learning [16.707045765042505]
現在のオフラインRLアルゴリズムは、累積外挿誤差のため、マルチエージェントシステムでは有効ではない。
本稿では,外挿誤差を効果的に軽減する新しいオフラインRLアルゴリズム,Implicit Constraint Q-learning (ICQ)を提案する。
実験結果から, 外挿誤差はほぼゼロに減少し, エージェント数に敏感であることが示唆された。
論文 参考訳(メタデータ) (2021-06-07T08:02:31Z) - OPAL: Offline Primitive Discovery for Accelerating Offline Reinforcement
Learning [107.6943868812716]
エージェントは大量のオフライン体験データにアクセスでき、オンライン環境へのアクセスは極めて限られている。
我々の主な洞察は、様々な行動からなるオフラインデータを提示すると、このデータを活用する効果的な方法は、反復的かつ時間的に拡張された原始的行動の連続的な空間を抽出することである。
オフラインポリシ最適化のメリットに加えて,このようなオフラインプリミティブ学習の実施も,数発の模倣学習の改善に有効であることを示す。
論文 参考訳(メタデータ) (2020-10-26T14:31:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。