SA-Attack: Speed-adaptive stealthy adversarial attack on trajectory prediction
- URL: http://arxiv.org/abs/2404.12612v1
- Date: Fri, 19 Apr 2024 03:51:46 GMT
- Title: SA-Attack: Speed-adaptive stealthy adversarial attack on trajectory prediction
- Authors: Huilin Yin, Jiaxiang Li, Pengju Zhen, Jun Yan,
- Abstract summary: Trajectory prediction is critical for the safe planning and navigation of automated vehicles.
We propose a speed-adaptive stealthy adversarial attack method named SA-Attack.
- Score: 2.0183079253175724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trajectory prediction is critical for the safe planning and navigation of automated vehicles. The trajectory prediction models based on the neural networks are vulnerable to adversarial attacks. Previous attack methods have achieved high attack success rates but overlook the adaptability to realistic scenarios and the concealment of the deceits. To address this problem, we propose a speed-adaptive stealthy adversarial attack method named SA-Attack. This method searches the sensitive region of trajectory prediction models and generates the adversarial trajectories by using the vehicle-following method and incorporating information about forthcoming trajectories. Our method has the ability to adapt to different speed scenarios by reconstructing the trajectory from scratch. Fusing future trajectory trends and curvature constraints can guarantee the smoothness of adversarial trajectories, further ensuring the stealthiness of attacks. The empirical study on the datasets of nuScenes and Apolloscape demonstrates the attack performance of our proposed method. Finally, we also demonstrate the adaptability and stealthiness of SA-Attack for different speed scenarios. Our code is available at the repository: https://github.com/eclipse-bot/SA-Attack.
Related papers
- Downstream Transfer Attack: Adversarial Attacks on Downstream Models with Pre-trained Vision Transformers [95.22517830759193]
This paper studies the transferability of such an adversarial vulnerability from a pre-trained ViT model to downstream tasks.
We show that DTA achieves an average attack success rate (ASR) exceeding 90%, surpassing existing methods by a huge margin.
arXiv Detail & Related papers (2024-08-03T08:07:03Z) - A First Physical-World Trajectory Prediction Attack via LiDAR-induced Deceptions in Autonomous Driving [23.08193005790747]
Existing attacks compromise the prediction model of a victim AV.
We propose a novel two-stage attack framework to realize the single-point attack.
Our attack causes a collision rate of up to 63% and various hazardous responses of the victim AV.
arXiv Detail & Related papers (2024-06-17T16:26:00Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Adversarial Backdoor Attack by Naturalistic Data Poisoning on Trajectory
Prediction in Autonomous Driving [18.72382517467458]
We propose a novel adversarial backdoor attack against trajectory prediction models.
Our attack affects the victim at training time via naturalistic, hence stealthy, poisoned samples crafted using a novel two-step approach.
We show that the proposed attack is highly effective, as it can significantly hinder the performance of prediction models.
arXiv Detail & Related papers (2023-06-27T19:15:06Z) - Practical Adversarial Attacks on Spatiotemporal Traffic Forecasting
Models [9.885060319609831]
Existing methods assume a reliable and unbiased forecasting environment, which is not always available in the wild.
We propose a practical adversarial attack framework, instead of simultaneously attacking all data sources.
We theoretically demonstrate the worst performance bound of adversarial traffic forecasting attacks.
arXiv Detail & Related papers (2022-10-05T02:25:10Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Projective Ranking-based GNN Evasion Attacks [52.85890533994233]
Graph neural networks (GNNs) offer promising learning methods for graph-related tasks.
GNNs are at risk of adversarial attacks.
arXiv Detail & Related papers (2022-02-25T21:52:09Z) - Evaluating the Robustness of Semantic Segmentation for Autonomous
Driving against Real-World Adversarial Patch Attacks [62.87459235819762]
In a real-world scenario like autonomous driving, more attention should be devoted to real-world adversarial examples (RWAEs)
This paper presents an in-depth evaluation of the robustness of popular SS models by testing the effects of both digital and real-world adversarial patches.
arXiv Detail & Related papers (2021-08-13T11:49:09Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNs are typically vulnerable to adversarial attacks, which pose a threat to security-sensitive applications.
We propose the adaptive feature alignment (AFA) to generate features of arbitrary attacking strengths.
Our method is trained to automatically align features of arbitrary attacking strength.
arXiv Detail & Related papers (2021-05-31T17:01:05Z) - Nonlinear Model Based Guidance with Deep Learning Based Target
Trajectory Prediction Against Aerial Agile Attack Patterns [0.0]
We propose a novel missile guidance algorithm that combines deep learning based trajectory prediction with nonlinear model predictive control.
Our method, named nonlinear model based predictive control with target acceleration predictions (NMPC-TAP), significantly outperforms compared approaches in terms of miss distance.
arXiv Detail & Related papers (2021-04-06T13:20:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.