Practical Adversarial Attacks on Spatiotemporal Traffic Forecasting
Models
- URL: http://arxiv.org/abs/2210.02447v1
- Date: Wed, 5 Oct 2022 02:25:10 GMT
- Title: Practical Adversarial Attacks on Spatiotemporal Traffic Forecasting
Models
- Authors: Fan Liu and Hao Liu and Wenzhao Jiang
- Abstract summary: Existing methods assume a reliable and unbiased forecasting environment, which is not always available in the wild.
We propose a practical adversarial attack framework, instead of simultaneously attacking all data sources.
We theoretically demonstrate the worst performance bound of adversarial traffic forecasting attacks.
- Score: 9.885060319609831
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning based traffic forecasting models leverage sophisticated
spatiotemporal auto-correlations to provide accurate predictions of city-wide
traffic states. However, existing methods assume a reliable and unbiased
forecasting environment, which is not always available in the wild. In this
work, we investigate the vulnerability of spatiotemporal traffic forecasting
models and propose a practical adversarial spatiotemporal attack framework.
Specifically, instead of simultaneously attacking all geo-distributed data
sources, an iterative gradient-guided node saliency method is proposed to
identify the time-dependent set of victim nodes. Furthermore, we devise a
spatiotemporal gradient descent based scheme to generate real-valued
adversarial traffic states under a perturbation constraint. Meanwhile, we
theoretically demonstrate the worst performance bound of adversarial traffic
forecasting attacks. Extensive experiments on two real-world datasets show that
the proposed two-step framework achieves up to $67.8\%$ performance degradation
on various advanced spatiotemporal forecasting models. Remarkably, we also show
that adversarial training with our proposed attacks can significantly improve
the robustness of spatiotemporal traffic forecasting models. Our code is
available in \url{https://github.com/luckyfan-cs/ASTFA}.
Related papers
- Causally-Aware Spatio-Temporal Multi-Graph Convolution Network for Accurate and Reliable Traffic Prediction [5.200012764049096]
This study focuses on an instance of--temporal problem--traffic prediction--to demonstrate an advanced deep learning model for making accurate and reliable forecast.
We propose an end-to-end traffic prediction framework that leverages three primary components to accurate and reliable traffic predictions.
Experimental results on two real-world traffic datasets demonstrate that the method outperforms several state-of-the-art models in prediction accuracy.
arXiv Detail & Related papers (2024-08-23T14:35:54Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
We introduce a benchmark that queries future trajectories on streaming data and we refer to it as "streaming forecasting"
Our benchmark inherently captures the disappearance and re-appearance of agents, which is a safety-critical problem yet overlooked by snapshot-based benchmarks.
We propose a plug-and-play meta-algorithm called "Predictive Streamer" that can adapt any snapshot-based forecaster into a streaming forecaster.
arXiv Detail & Related papers (2023-10-02T17:13:16Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Robust Spatiotemporal Traffic Forecasting with Reinforced Dynamic
Adversarial Training [13.998123723601651]
Machine learning-based forecasting models are commonly used in Intelligent Transportation Systems (ITS) to predict traffic patterns.
Most of the existing models are susceptible to adversarial attacks, which can lead to inaccurate predictions and negative consequences such as congestion and delays.
We propose a framework for incorporating adversarial training into traffic forecasting tasks.
arXiv Detail & Related papers (2023-06-25T04:53:29Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Spatially Focused Attack against Spatiotemporal Graph Neural Networks [8.665638585791235]
Deep Spatiotemporal graph neural networks (GNNs) have achieved great success in traffic forecasting applications.
If GNNs are vulnerable in real-world prediction applications, a hacker can easily manipulate the results and cause serious traffic congestion and even a city-scale breakdown.
arXiv Detail & Related papers (2021-09-10T01:31:53Z) - Adversarial Diffusion Attacks on Graph-based Traffic Prediction Models [5.067859671505088]
Recent studies reveal the vulnerability of graphal networks (CN) under adversarial attacks.
This paper proposes a new task -- diffusion attack, to study the robustness of GCN-based traffic prediction models.
The proposed algorithm demonstrates high efficiency in the adversarial attack tasks under various scenarios.
arXiv Detail & Related papers (2021-04-19T14:57:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.