Transformer-Based Classification Outcome Prediction for Multimodal Stroke Treatment
- URL: http://arxiv.org/abs/2404.12634v2
- Date: Sat, 3 Aug 2024 14:53:25 GMT
- Title: Transformer-Based Classification Outcome Prediction for Multimodal Stroke Treatment
- Authors: Danqing Ma, Meng Wang, Ao Xiang, Zongqing Qi, Qin Yang,
- Abstract summary: This study proposes a multi-modal fusion framework Multitrans based on the Transformer architecture and self-attention mechanism.
This architecture combines the study of non-contrast computed tomography (NCCT) images and discharge diagnosis reports of patients undergoing stroke treatment.
- Score: 8.686077984641356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposes a multi-modal fusion framework Multitrans based on the Transformer architecture and self-attention mechanism. This architecture combines the study of non-contrast computed tomography (NCCT) images and discharge diagnosis reports of patients undergoing stroke treatment, using a variety of methods based on Transformer architecture approach to predicting functional outcomes of stroke treatment. The results show that the performance of single-modal text classification is significantly better than single-modal image classification, but the effect of multi-modal combination is better than any single modality. Although the Transformer model only performs worse on imaging data, when combined with clinical meta-diagnostic information, both can learn better complementary information and make good contributions to accurately predicting stroke treatment effects..
Related papers
- Enhancing Multimodal Medical Image Classification using Cross-Graph Modal Contrastive Learning [5.660131312162423]
This paper proposes a novel Cross-Graph Modal Contrastive Learning framework for multimodal medical image classification.
The proposed approach is evaluated on two datasets: a Parkinson's disease (PD) dataset and a public melanoma dataset.
Results demonstrate that CGMCL outperforms conventional unimodal methods in accuracy, interpretability, and early disease prediction.
arXiv Detail & Related papers (2024-10-23T01:25:25Z) - Translating Imaging to Genomics: Leveraging Transformers for Predictive Modeling [9.403446155541346]
We aim to bridge the gap between imaging and genomics data by leveraging transformer networks.
We propose using only available CT/MRI images to predict genomic sequences.
arXiv Detail & Related papers (2024-08-01T06:14:37Z) - SeUNet-Trans: A Simple yet Effective UNet-Transformer Model for Medical
Image Segmentation [0.0]
We propose a simple yet effective UNet-Transformer (seUNet-Trans) model for medical image segmentation.
In our approach, the UNet model is designed as a feature extractor to generate multiple feature maps from the input images.
By leveraging the UNet architecture and the self-attention mechanism, our model not only retains the preservation of both local and global context information but also is capable of capturing long-range dependencies between input elements.
arXiv Detail & Related papers (2023-10-16T01:13:38Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
We report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner.
The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases.
arXiv Detail & Related papers (2023-06-01T16:23:47Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - TranSOP: Transformer-based Multimodal Classification for Stroke
Treatment Outcome Prediction [2.358784542343728]
We propose a transformer-based multimodal network (TranSOP) for a classification approach that employs clinical metadata and imaging information.
This includes a fusion module to efficiently combine 3D non-contrast computed tomography (NCCT) features and clinical information.
In comparative experiments using unimodal and multimodal data, we achieve a state-of-the-art AUC score of 0.85.
arXiv Detail & Related papers (2023-01-25T21:05:10Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
We propose a novel Transformer-based Diffusion framework, called MedSegDiff-V2.
We verify its effectiveness on 20 medical image segmentation tasks with different image modalities.
arXiv Detail & Related papers (2023-01-19T03:42:36Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
We propose a novel approach to translate unpaired contrast computed tomography (CT) scans to non-contrast CT scans.
Our approach is based on cycle-consistent generative adversarial convolutional transformers, for short, CyTran.
Our empirical results show that CyTran outperforms all competing methods.
arXiv Detail & Related papers (2021-10-12T23:25:03Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - TransMed: Transformers Advance Multi-modal Medical Image Classification [4.500880052705654]
convolutional neural networks (CNN) have shown very competitive performance in medical image analysis tasks.
Transformers have been applied to computer vision and achieved remarkable success in large-scale datasets.
TransMed combines the advantages of CNN and transformer to efficiently extract low-level features of images.
arXiv Detail & Related papers (2021-03-10T08:57:53Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.