Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images
- URL: http://arxiv.org/abs/2104.02652v1
- Date: Fri, 2 Apr 2021 20:52:05 GMT
- Title: Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images
- Authors: Meng Xia, Meenal K. Kheterpal, Samantha C. Wong, Christine Park,
William Ratliff, Lawrence Carin, Ricardo Henao
- Abstract summary: We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
- Score: 65.1629311281062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider machine-learning-based malignancy prediction and lesion
identification from clinical dermatological images, which can be indistinctly
acquired via smartphone or dermoscopy capture. Additionally, we do not assume
that images contain single lesions, thus the framework supports both focal or
wide-field images. Specifically, we propose a two-stage approach in which we
first identify all lesions present in the image regardless of sub-type or
likelihood of malignancy, then it estimates their likelihood of malignancy, and
through aggregation, it also generates an image-level likelihood of malignancy
that can be used for high-level screening processes. Further, we consider
augmenting the proposed approach with clinical covariates (from electronic
health records) and publicly available data (the ISIC dataset). Comprehensive
experiments validated on an independent test dataset demonstrate that i) the
proposed approach outperforms alternative model architectures; ii) the model
based on images outperforms a pure clinical model by a large margin, and the
combination of images and clinical data does not significantly improves over
the image-only model; and iii) the proposed framework offers comparable
performance in terms of malignancy classification relative to three board
certified dermatologists with different levels of experience.
Related papers
- A Multimodal Approach For Endoscopic VCE Image Classification Using BiomedCLIP-PubMedBERT [0.62914438169038]
This Paper presents an advanced approach for fine-tuning BiomedCLIP PubMedBERT, a multimodal model, to classify abnormalities in Video Capsule Endoscopy frames.
Our method categorizes images into ten specific classes: angioectasia, bleeding, erosion, erythema, foreign body, lymphangiectasia, polyp, ulcer, worms, and normal.
Performance metrics, including classification, accuracy, recall, and F1 score, indicate the models strong ability to accurately identify abnormalities in endoscopic frames.
arXiv Detail & Related papers (2024-10-25T19:42:57Z) - Enhancing Multimodal Medical Image Classification using Cross-Graph Modal Contrastive Learning [5.660131312162423]
This paper proposes a novel Cross-Graph Modal Contrastive Learning framework for multimodal medical image classification.
The proposed approach is evaluated on two datasets: a Parkinson's disease (PD) dataset and a public melanoma dataset.
Results demonstrate that CGMCL outperforms conventional unimodal methods in accuracy, interpretability, and early disease prediction.
arXiv Detail & Related papers (2024-10-23T01:25:25Z) - VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics [0.0]
Visual attribution in medical imaging seeks to make evident the diagnostically-relevant components of a medical image.
We here present a novel generative visual attribution technique, one that leverages latent diffusion models in combination with domain-specific large language models.
The resulting system also exhibits a range of latent capabilities including zero-shot localized disease induction.
arXiv Detail & Related papers (2024-01-02T19:51:49Z) - Revamping AI Models in Dermatology: Overcoming Critical Challenges for
Enhanced Skin Lesion Diagnosis [8.430482797862926]
We present an All-In-One textbfHierarchical-textbfOut of Distribution-textbfClinical Triage model.
For a clinical image, our model generates three outputs: a hierarchical prediction, an alert for out-of-distribution images, and a recommendation for dermoscopy.
Our versatile model provides valuable decision support for lesion diagnosis and sets a promising precedent for medical AI applications.
arXiv Detail & Related papers (2023-11-02T06:08:49Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Deep Cervix Model Development from Heterogeneous and Partially Labeled
Image Datasets [0.0]
Cervical cancer is the fourth most common cancer in women worldwide.
There are a wide variety of cervical inspection objectives which impact the labeling criteria for criteria-specific prediction model development.
Motivated by these challenges, we propose a self-supervised learning (SSL) based approach to produce a pre-trained cervix model from unlabeled cervical images.
arXiv Detail & Related papers (2022-01-18T14:24:50Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.