論文の概要: Erasure-tolerance protocol for the surface codes on Rydberg atomic quantum computers
- arxiv url: http://arxiv.org/abs/2404.12656v1
- Date: Fri, 19 Apr 2024 06:44:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 16:05:28.705709
- Title: Erasure-tolerance protocol for the surface codes on Rydberg atomic quantum computers
- Title(参考訳): Rydberg原子量子コンピュータ上の表面符号の消去耐性プロトコル
- Authors: Fumiyoshi Kobayashi, Shota Nagayama,
- Abstract要約: 光ツイーザを備えたライドバーグ原子配列は、フォールトトレラント量子コンピュータの候補として有望である。
克服すべき大きな障壁は、非Pauliエラー、消去エラー、リークエラーである。
我々は,この問題を許容する新しいスキーム,すなわちtextit$k$-shift消去回復スキームを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rydberg atom array with optical tweezers is a promising candidate for a fault-tolerant quantum computer, thanks to its good properties such as scalability, long coherence time and optical accessibility for communication. A big barrier to overcome is non-Pauli errors, erasure errors and leakage errors. Conventional work has revealed that leakage error is convertible to erasure error. A remaining problem is that such (converted) erasure errors continuously happen and accumulate. The previous proposal involved transporting atoms directly from the reservoir area, where atoms are stored for spare, to the computational area, where the computation and the error correction are processed, to correct atom loss. However, transporting atoms takes a long time and has side effects on surrounding qubits in practice. In this study, we evaluate the effects on planar code by circuit-based Monte Carlo simulation which has depolarizing errors and erasure errors, and propose a new scheme to tolerate that problem, namely, \textit{$k$-shift erasure recovery} scheme. Our scheme uses online code deformation to tolerate erasures and repeatedly transfers the logical qubit from an imperfect array in which erasure errors accumulated to another perfect array in which erasure errors have been fixed by offline optical tweezers, to tolerate a large (accumulated) number of erasures. Furthermore, our scheme corrects erasure errors of atom arrays while logical qubits are evacuated from that area to correct; therefore, manipulating optical tweezers for erasure correction does not disturb qubits that compose logical data. We believe that our scheme provides practical directions for Rydberg atom quantum computers to realize feasible fault-tolerance.
- Abstract(参考訳): 光ツイーザを備えたライドバーグ原子配列は、スケーラビリティ、長いコヒーレンス時間、通信のための光アクセシビリティといった優れた性質のおかげで、フォールトトレラント量子コンピュータの候補として期待できる。
克服すべき大きな障壁は、非Pauliエラー、消去エラー、リークエラーである。
従来の研究によると、漏洩エラーは消去エラーに変換可能である。
残る問題は、このような(変換された)消去エラーが継続的に発生して蓄積されることである。
従来の提案では、予備の原子が格納されている貯水池から計算領域へ原子を直接輸送し、計算と誤り訂正を行い、原子の損失を補正するものだった。
しかし、原子の輸送には長い時間がかかるため、実際には周囲の量子ビットに副作用がある。
本研究では,回路ベースモンテカルロシミュレーションによる平面コードへの影響評価を行い,この問題を許容する新たな手法,すなわち \textit{$k$-shift erasure recovery}スキームを提案する。
提案方式では, オンラインコード変形を用いて消去を許容し, 消去エラーが蓄積された不完全配列から, オフライン光ツイーザによって消去エラーが修正された完全配列へ論理量子ビットを繰り返し転送し, 大量の消去を許容する。
さらに,その領域から論理量子ビットを退避させながら原子配列の消去誤差を補正するので,消去補正のための光ツイーザの操作は論理データを構成する量子ビットを妨害しない。
我々はRydberg原子量子コンピュータが実現可能なフォールトトレランスを実現するための実用的な方向を提供すると考えている。
関連論文リスト
- Degenerate quantum erasure decoding [7.6119527195998025]
明示的なコードと効率的なデコーダを用いて、ニアキャパシティ性能を実現する方法を示す。
さらに、混合消去や非分極エラーなど、他のエラーモデルを扱うデコーダの可能性についても検討する。
論文 参考訳(メタデータ) (2024-11-20T18:02:05Z) - Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
本研究では、スピンキャット符号を用いて、大きなスピンキュウトに符号化された量子ビットに基づいて、フォールトトレラントな量子誤り訂正プロトコルを構築する。
我々は、量子制御とライダーベルク封鎖を用いて、ランク保存されたCNOTゲートを含む普遍ゲートセットを生成する方法を示す。
これらの知見は、量子情報処理において、耐障害性、高いしきい値、リソースオーバーヘッドを低減できる可能性を持つ、大きなスピンで量子ビットを符号化する方法を舗装している。
論文 参考訳(メタデータ) (2024-01-08T22:56:05Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
本稿では,物理誤差を消去に変換する171ドルYb中性原子量子ビットに対して,量子ビット符号化とゲートプロトコルを提案する。
エラーの98%を消去に変換できると見積もっている。
論文 参考訳(メタデータ) (2022-01-10T18:56:31Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
本稿では,エラーに対する極めて高い耐性を有する表面符号を用いた量子誤り訂正法について述べる。
誤差補正サイクルにおいて、論理量子ビットの4つの基数状態の保存を実証する。
論文 参考訳(メタデータ) (2021-12-07T13:58:44Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
最先端の量子プラットフォームは通常、物理的エラーレートが10~3ドル近くである。
量子誤り訂正(QEC)は、多くの物理量子ビットに量子論理情報を分散することで、この分割を橋渡しすることを約束する。
超伝導量子ビットの2次元格子に埋め込まれた1次元繰り返し符号を実装し、ビットまたは位相フリップ誤差の指数的抑制を示す。
論文 参考訳(メタデータ) (2021-02-11T17:11:20Z) - Removing leakage-induced correlated errors in superconducting quantum
error correction [1.8397027011844889]
量子コンピューティングは誤り訂正によってスケーラブルになるが、物理誤差が十分に相関しない場合、論理誤差率はシステムサイズでしか減少しない。
ここでは、関連するすべての高レベル状態から基底状態に量子ビットを返すリセットプロトコルを報告する。
論理的誤差の低減と、量子ビット数の増加に伴う誤り抑制のスケーリングと安定性の向上を見出した。
論文 参考訳(メタデータ) (2021-02-11T17:11:11Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
本稿では、電波トラップで閉じ込められた1本のイオン列をベースとした量子計算アーキテクチャにおけるクロストーク誤差の研究を行い、個別に調整されたレーザービームで操作する。
この種の誤差は、理想的には、異なるアクティブな量子ビットのセットで処理される単一量子ゲートと2量子ビットの量子ゲートが適用されている間は、未修正のままであるオブザーバー量子ビットに影響を及ぼす。
我々は,第1原理からクロストーク誤りを微視的にモデル化し,コヒーレント対非コヒーレントなエラーモデリングの重要性を示す詳細な研究を行い,ゲートレベルでクロストークを積極的に抑制するための戦略について議論する。
論文 参考訳(メタデータ) (2020-12-21T14:20:40Z) - Deterministic correction of qubit loss [48.43720700248091]
量子ビットの損失は、大規模かつフォールトトレラントな量子情報プロセッサに対する根本的な障害の1つである。
トポロジカル曲面符号の最小インスタンスに対して、量子ビット損失検出と補正の完全なサイクルの実装を実験的に実証した。
論文 参考訳(メタデータ) (2020-02-21T19:48:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。