論文の概要: Erasure-tolerance scheme for the surface codes on neutral atom quantum computers
- arxiv url: http://arxiv.org/abs/2404.12656v3
- Date: Sat, 30 Nov 2024 03:49:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 20:22:26.858750
- Title: Erasure-tolerance scheme for the surface codes on neutral atom quantum computers
- Title(参考訳): 中性原子量子コンピュータの表面符号の消去耐性スキーム
- Authors: Fumiyoshi Kobayashi, Shota Nagayama,
- Abstract要約: 克服すべき重要な課題は、非Pauliエラー、特にエラーの消去とリークエラーの存在である。
以前の研究では、リークエラーは消去エラーに変換可能であることが示されているが、これらの(変換された)消去エラーは継続的に発生し、時間の経過とともに蓄積される。
そこで本研究では,k-shift消去回復法という新たな手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Neutral atom arrays manipulated with optical tweezers are promising candidates for fault-tolerant quantum computers due to their advantageous properties, such as scalability, long coherence times, and optical accessibility for communication. A significant challenge to overcome is the presence of non-Pauli errors, specifically erasure errors and leakage errors. Previous work has shown that leakage errors can be converted into erasure errors; however, these (converted) erasure errors continuously occur and accumulate over time. Prior proposals have involved transporting atoms directly from a reservoir area--where spare atoms are stored--to the computational area--where computation and error correction are performed--to correct atom loss. While coherent transport is promising, it may not address all challenges--particularly its effectiveness in dense arrays and alternative methods must help. In this study, we evaluate the effects of erasure errors on the surface code using circuit-based Monte Carlo simulations that incorporate depolarizing and accumulated erasure errors. We propose a new scheme to mitigate this problem: a k-shift erasure recovery scheme. Our scheme employs code deformation to repeatedly transfer the logical qubit from an imperfect array with accumulated erased qubits to a perfect array, thereby tolerating many accumulated erasures. Furthermore, our scheme corrects erasure errors in the atom arrays while the logical qubits are evacuated from the area being corrected; thus, manipulating optical tweezers for erasure correction does not disturb the qubits that constitute the logical data. Our scheme provides a practical pathway for neutral atom quantum computers to achieve feasible fault tolerance.
- Abstract(参考訳): 光ツイーザで操作された中性原子配列は、スケーラビリティ、長いコヒーレンス時間、通信における光アクセシビリティなどの利点から、フォールトトレラント量子コンピュータの候補として期待されている。
克服すべき重要な課題は、非Pauliエラー、特にエラーの消去とリークエラーの存在である。
以前の研究では、リークエラーは消去エラーに変換可能であることが示されているが、これらの(変換された)消去エラーは継続的に発生し、時間の経過とともに蓄積される。
従来の提案では、予備原子が保存されている貯水池から直接原子を輸送することが含まれていた。
コヒーレントトランスポートは有望だが、すべての課題に対処するわけではない。
本研究では, 脱分極および累積消去誤差を含む回路ベースモンテカルロシミュレーションを用いて, 消去誤差が表面コードに与える影響を評価する。
そこで本研究では,k-shift消去回復法という新たな手法を提案する。
提案方式では,完全配列に累積消去量子ビットを蓄積した不完全配列から完全配列へ繰り返し論理量子ビットを転送するコード変形を用いて,多数の蓄積消去を許容する。
さらに,各領域から論理量子ビットを退避させながら,原子配列の消去誤差を補正するので,消去補正のための光ツイーザの操作は論理データを構成する量子ビットを妨害しない。
提案手法は,中性原子量子コンピュータが実現可能な耐故障性を実現するための実用的な経路を提供する。
関連論文リスト
- Resilience of the surface code to error bursts [0.027042267806481293]
いくつかのまれな物理的メカニズムは、多くの量子ビットに影響を与えるエラー率を一時的に増加させる可能性がある。
例えば、超伝導ハードウェアにおける電離放射線や、原子系の大域的な制御における大きな偏差などである。
ゲート誤差率におけるこのような稀な過渡スパイクを、エラーバーストと呼ぶ。
論文 参考訳(メタデータ) (2024-06-27T05:23:36Z) - Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
本研究では、スピンキャット符号を用いて、大きなスピンキュウトに符号化された量子ビットに基づいて、フォールトトレラントな量子誤り訂正プロトコルを構築する。
我々は、量子制御とライダーベルク封鎖を用いて、ランク保存されたCNOTゲートを含む普遍ゲートセットを生成する方法を示す。
これらの知見は、量子情報処理において、耐障害性、高いしきい値、リソースオーバーヘッドを低減できる可能性を持つ、大きなスピンで量子ビットを符号化する方法を舗装している。
論文 参考訳(メタデータ) (2024-01-08T22:56:05Z) - Demonstrating a long-coherence dual-rail erasure qubit using tunable transmons [59.63080344946083]
共振結合された一対のトランスモンからなる「デュアルレール量子ビット」が高コヒーレントな消去量子ビットを形成することを示す。
我々は、チェック毎に0.1%$ dephasingエラーを導入しながら、消去エラーの中間回路検出を実演する。
この研究は、ハードウェア効率の量子誤り訂正のための魅力的なビルディングブロックとして、トランスモンベースのデュアルレールキュービットを確立する。
論文 参考訳(メタデータ) (2023-07-17T18:00:01Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
本稿では,物理誤差を消去に変換する171ドルYb中性原子量子ビットに対して,量子ビット符号化とゲートプロトコルを提案する。
エラーの98%を消去に変換できると見積もっている。
論文 参考訳(メタデータ) (2022-01-10T18:56:31Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
最先端の量子プラットフォームは通常、物理的エラーレートが10~3ドル近くである。
量子誤り訂正(QEC)は、多くの物理量子ビットに量子論理情報を分散することで、この分割を橋渡しすることを約束する。
超伝導量子ビットの2次元格子に埋め込まれた1次元繰り返し符号を実装し、ビットまたは位相フリップ誤差の指数的抑制を示す。
論文 参考訳(メタデータ) (2021-02-11T17:11:20Z) - Removing leakage-induced correlated errors in superconducting quantum
error correction [1.8397027011844889]
量子コンピューティングは誤り訂正によってスケーラブルになるが、物理誤差が十分に相関しない場合、論理誤差率はシステムサイズでしか減少しない。
ここでは、関連するすべての高レベル状態から基底状態に量子ビットを返すリセットプロトコルを報告する。
論理的誤差の低減と、量子ビット数の増加に伴う誤り抑制のスケーリングと安定性の向上を見出した。
論文 参考訳(メタデータ) (2021-02-11T17:11:11Z) - Deterministic correction of qubit loss [48.43720700248091]
量子ビットの損失は、大規模かつフォールトトレラントな量子情報プロセッサに対する根本的な障害の1つである。
トポロジカル曲面符号の最小インスタンスに対して、量子ビット損失検出と補正の完全なサイクルの実装を実験的に実証した。
論文 参考訳(メタデータ) (2020-02-21T19:48:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。