論文の概要: MLSD-GAN -- Generating Strong High Quality Face Morphing Attacks using Latent Semantic Disentanglement
- arxiv url: http://arxiv.org/abs/2404.12679v1
- Date: Fri, 19 Apr 2024 07:26:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 15:55:43.273632
- Title: MLSD-GAN -- Generating Strong High Quality Face Morphing Attacks using Latent Semantic Disentanglement
- Title(参考訳): MLSD-GAN --潜伏セマンティックアンタングルを用いた高画質顔モフリング攻撃の発生
- Authors: Aravinda Reddy PN, Raghavendra Ramachandra, Krothapalli Sreenivasa Rao, Pabitra Mitra,
- Abstract要約: 顔形態攻撃は顔認識システムを騙すのに使える。
本稿では,StyleGANのアンタングルを用いた高品質なモーフィング攻撃生成手法を提案する。
- 参考スコア(独自算出の注目度): 6.747633314364796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Face-morphing attacks are a growing concern for biometric researchers, as they can be used to fool face recognition systems (FRS). These attacks can be generated at the image level (supervised) or representation level (unsupervised). Previous unsupervised morphing attacks have relied on generative adversarial networks (GANs). More recently, researchers have used linear interpolation of StyleGAN-encoded images to generate morphing attacks. In this paper, we propose a new method for generating high-quality morphing attacks using StyleGAN disentanglement. Our approach, called MLSD-GAN, spherically interpolates the disentangled latents to produce realistic and diverse morphing attacks. We evaluate the vulnerability of MLSD-GAN on two deep-learning-based FRS techniques. The results show that MLSD-GAN poses a significant threat to FRS, as it can generate morphing attacks that are highly effective at fooling these systems.
- Abstract(参考訳): 顔認識システム(FRS)を騙すために使用できるため、生体認証研究者にとって顔変形攻撃はますます懸念される。
これらの攻撃は、イメージレベル(教師なし)または表現レベル(教師なし)で発生することができる。
従来、教師なしのモルヒネ攻撃はGAN(Generative Adversarial Network)に依存していた。
最近では、StyleGANで符号化された画像の線形補間を利用して、モーフィング攻撃を発生させている。
本稿では,StyleGANのアンタングルを用いた高品質なモーフィング攻撃生成手法を提案する。
MLSD-GANと呼ばれる我々のアプローチは、非絡み合った潜伏剤を球形で補間し、現実的で多様なモルヒネ攻撃を発生させる。
MLSD-GANの脆弱性を深層学習に基づく2つのFRS手法で評価した。
その結果、MLSD-GANは、これらのシステムを騙すのに非常に効果的であるモルヒネ攻撃を発生させるため、FRSに重大な脅威をもたらすことが明らかとなった。
関連論文リスト
- Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
本稿では, 対向性, 可視性に優れた対向性例を生成できるASMA(Adversarial Semantic Mask Attack framework)を提案する。
具体的には, 局所的なセマンティック領域の摂動を抑制し, 良好なステルス性を実現する, 対向型セマンティックマスク生成モデルを提案する。
論文 参考訳(メタデータ) (2024-06-16T10:38:11Z) - Pseudo Label-Guided Model Inversion Attack via Conditional Generative
Adversarial Network [102.21368201494909]
モデル反転(MI)攻撃はプライバシーに対する懸念を高めている。
近年のMI攻撃では,探索空間を狭める前にGAN(Generative Adversarial Network)を画像として活用している。
我々は条件付きGAN(cGAN)による擬似ラベル誘導MI(PLG-MI)攻撃を提案する。
論文 参考訳(メタデータ) (2023-02-20T07:29:34Z) - MorDIFF: Recognition Vulnerability and Attack Detectability of Face
Morphing Attacks Created by Diffusion Autoencoders [10.663919597506055]
顔のモーフィング攻撃は画像レベルでも表現レベルでも生成される。
拡散オートエンコーダモデルの最近の進歩は、GANの限界を克服し、高い再構成忠実度を実現している。
本研究では,拡散オートエンコーダを用いて顔形態形成攻撃を画像レベルおよび表現レベルの幅広い形態と比較する。
論文 参考訳(メタデータ) (2023-02-03T16:37:38Z) - Fusion-based Few-Shot Morphing Attack Detection and Fingerprinting [37.161842673434705]
顔認識システムは、モーフィング攻撃に弱い。
既存のモーフィング攻撃検出手法の多くは、大量のトレーニングデータを必要としており、いくつかの事前定義された攻撃モデルでのみテストされている。
我々は,MADを教師付き学習から少数ショット学習へ,バイナリ検出からマルチクラスフィンガープリントへ拡張することを提案する。
論文 参考訳(メタデータ) (2022-10-27T14:46:53Z) - Real-World Adversarial Examples involving Makeup Application [58.731070632586594]
フルフェイスメイクを用いた身体的敵攻撃を提案する。
我々の攻撃は、色や位置関連エラーなどのメークアップアプリケーションにおける手動エラーを効果的に克服できる。
論文 参考訳(メタデータ) (2021-09-04T05:29:28Z) - ReGenMorph: Visibly Realistic GAN Generated Face Morphing Attacks by
Attack Re-generation [7.169807933149473]
この研究は、新しいモーフィングパイプラインであるReGenMorphを示し、GANベースの世代を用いてLMAブレンディングアーティファクトを除去する。
生成したReGenMorphの外観は、最近のモーフィング手法と比較され、顔認識の脆弱性と攻撃検出性を評価する。
論文 参考訳(メタデータ) (2021-08-20T11:55:46Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
生成的ベースの敵攻撃は、この制限を取り除くことができる。
ASymmetric Saliency-based Auto-Encoder (SSAE) は摂動を生成する。
SSAEが生成した敵の例は、広く使われているモデルを崩壊させるだけでなく、優れた視覚的品質を実現する。
論文 参考訳(メタデータ) (2021-07-20T01:55:21Z) - Vulnerability Analysis of Face Morphing Attacks from Landmarks and
Generative Adversarial Networks [0.8602553195689513]
本稿は,OpenCV, FaceMorpher, WebMorph, および生成対向ネットワーク(StyleGAN)に基づく4種類のモーフィング攻撃を用いた新しいデータセットを提供する。
また,facenet,vgg-face,arcfaceなど,最先端の顔認識システムの脆弱性を評価するための広範な実験を行った。
論文 参考訳(メタデータ) (2020-12-09T22:10:17Z) - Robust Attacks on Deep Learning Face Recognition in the Physical World [48.909604306342544]
FaceAdvは、敵のステッカーを使ってFRシステムを騙す物理世界の攻撃だ。
主にステッカージェネレータとトランスフォーマーで構成され、前者は異なる形状のステッカーを作れる。
3種類のFRシステムに対するFaceAdvの有効性を評価するための広範囲な実験を行った。
論文 参考訳(メタデータ) (2020-11-27T02:24:43Z) - MIPGAN -- Generating Strong and High Quality Morphing Attacks Using
Identity Prior Driven GAN [22.220940043294334]
本稿では,アイデンティティ優先型生成適応ネットワークを用いた攻撃生成手法を提案する。
提案するMIPGANは、知覚的品質と識別因子を利用した新たに定式化された損失関数であるStyleGANから派生した。
提案手法は,商用およびディープラーニングベースの顔認識システムに対して,その脆弱性を評価することによって,強力なモーフィング攻撃を発生させることが可能であることを示す。
論文 参考訳(メタデータ) (2020-09-03T15:08:38Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
ディープ畳み込みニューラルネットワーク(DCNN)は敵の例に弱いことが判明した。
転送可能な敵の例は、DCNNの堅牢性を著しく妨げます。
DFANetは畳み込み層で使用されるドロップアウトベースの手法であり,サロゲートモデルの多様性を高めることができる。
クエリなしで4つの商用APIをうまく攻撃できる新しい対向顔ペアを生成します。
論文 参考訳(メタデータ) (2020-04-13T06:44:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。