Near-Tight Runtime Guarantees for Many-Objective Evolutionary Algorithms
- URL: http://arxiv.org/abs/2404.12746v2
- Date: Tue, 11 Jun 2024 11:41:49 GMT
- Title: Near-Tight Runtime Guarantees for Many-Objective Evolutionary Algorithms
- Authors: Simon Wietheger, Benjamin Doerr,
- Abstract summary: We prove near-tight runtime guarantees for SEMO, global SEMO, and SMS-EMOA algorithms on classic benchmarks.
This is the first time that such tight bounds are proven for many-objective uses of these MOEAs.
- Score: 10.165640083594573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite significant progress in the field of mathematical runtime analysis of multi-objective evolutionary algorithms (MOEAs), the performance of MOEAs on discrete many-objective problems is little understood. In particular, the few existing bounds for the SEMO, global SEMO, and SMS-EMOA algorithms on classic benchmarks are all roughly quadratic in the size of the Pareto front. In this work, we prove near-tight runtime guarantees for these three algorithms on the four most common benchmark problems OneMinMax, CountingOnesCountingZeros, LeadingOnesTrailingZeros, and OneJumpZeroJump, and this for arbitrary numbers of objectives. Our bounds depend only linearly on the Pareto front size, showing that these MOEAs on these benchmarks cope much better with many objectives than what previous works suggested. Our bounds are tight apart from small polynomial factors in the number of objectives and length of bitstrings. This is the first time that such tight bounds are proven for many-objective uses of these MOEAs. While it is known that such results cannot hold for the NSGA-II, we do show that our bounds, via a recent structural result, transfer to the NSGA-III algorithm.
Related papers
- Runtime Analyses of NSGA-III on Many-Objective Problems [10.955844285189372]
We present the first runtime analyses of NSGA-III on the popular many-objective benchmark problems mLOTZ, mOMM, and mCOCZ.
We show how these parameters should be scaled with the problem dimension, the number of objectives and the fitness range.
To our knowledge, these are the first runtime analyses for NSGA-III for more than 3 objectives.
arXiv Detail & Related papers (2024-04-17T14:39:14Z) - Runtime Analysis of the SMS-EMOA for Many-Objective Optimization [14.309243378538014]
This paper conducts the first rigorous runtime analysis in many objectives for the SMSEMOA.
We show that SMS-EMOA has a performance comparable to the GSEMO and the NSGA-II.
arXiv Detail & Related papers (2023-12-16T02:23:09Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z) - Sparsity May Cry: Let Us Fail (Current) Sparse Neural Networks Together! [100.19080749267316]
"Sparsity May Cry" Benchmark (SMC-Bench) is a collection of carefully-curated 4 diverse tasks with 10 datasets.
SMC-Bench is designed to favor and encourage the development of more scalable and generalizable sparse algorithms.
arXiv Detail & Related papers (2023-03-03T18:47:21Z) - Beyond SOT: Tracking Multiple Generic Objects at Once [141.36900362724975]
Generic Object Tracking (GOT) is the problem of tracking target objects, specified by bounding boxes in the first frame of a video.
We introduce a new large-scale GOT benchmark, LaGOT, containing multiple annotated target objects per sequence.
Our approach achieves highly competitive results on single-object GOT datasets, setting a new state of the art on TrackingNet with a success rate AUC of 84.4%.
arXiv Detail & Related papers (2022-12-22T17:59:19Z) - Runtime Analysis for the NSGA-II: Proving, Quantifying, and Explaining
the Inefficiency For Many Objectives [16.904475483445452]
The NSGA-II is one of the most prominent algorithms to solve multi-objective optimization problems.
We show that the NSGA-II is less effective for larger numbers of objectives.
arXiv Detail & Related papers (2022-11-23T16:15:26Z) - A Mathematical Runtime Analysis of the Non-dominated Sorting Genetic
Algorithm III (NSGA-III) [9.853329403413701]
The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is the most prominent multi-objective evolutionary algorithm for real-world applications.
We provide the first mathematical runtime analysis of the NSGA-III, a refinement of the NSGA-II aimed at better handling more than two objectives.
arXiv Detail & Related papers (2022-11-15T15:10:36Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Mathematical Runtime Analysis for the Non-Dominated Sorting Genetic
Algorithm II (NSGA-II) [16.904475483445452]
We show that runtime analyses are feasible also for the NSGA-II.
We prove that with a population size four times larger than the size of the Pareto front, the NSGA-II satisfies the same runtime guarantees as the SEMO and GSEMO algorithms.
arXiv Detail & Related papers (2021-12-16T03:00:20Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
This paper focuses on methods for solving smooth non-concave min-max problems, which have received increasing attention due to deep learning (e.g., deep AUC)
arXiv Detail & Related papers (2020-06-12T00:32:21Z) - Lagrangian Decomposition for Neural Network Verification [148.0448557991349]
A fundamental component of neural network verification is the computation of bounds on the values their outputs can take.
We propose a novel approach based on Lagrangian Decomposition.
We show that we obtain bounds comparable with off-the-shelf solvers in a fraction of their running time.
arXiv Detail & Related papers (2020-02-24T17:55:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.