Do Large Language Model Benchmarks Test Reliability?
- URL: http://arxiv.org/abs/2502.03461v1
- Date: Wed, 05 Feb 2025 18:58:19 GMT
- Title: Do Large Language Model Benchmarks Test Reliability?
- Authors: Joshua Vendrow, Edward Vendrow, Sara Beery, Aleksander Madry,
- Abstract summary: We investigate how well current benchmarks quantify model reliability.
Motivated by this gap in the evaluation of reliability, we propose the concept of so-called platinum benchmarks.
We evaluate a wide range of models on these platinum benchmarks and find that, indeed, frontier LLMs still exhibit failures on simple tasks.
- Score: 66.1783478365998
- License:
- Abstract: When deploying large language models (LLMs), it is important to ensure that these models are not only capable, but also reliable. Many benchmarks have been created to track LLMs' growing capabilities, however there has been no similar focus on measuring their reliability. To understand the potential ramifications of this gap, we investigate how well current benchmarks quantify model reliability. We find that pervasive label errors can compromise these evaluations, obscuring lingering model failures and hiding unreliable behavior. Motivated by this gap in the evaluation of reliability, we then propose the concept of so-called platinum benchmarks, i.e., benchmarks carefully curated to minimize label errors and ambiguity. As a first attempt at constructing such benchmarks, we revise examples from fifteen existing popular benchmarks. We evaluate a wide range of models on these platinum benchmarks and find that, indeed, frontier LLMs still exhibit failures on simple tasks such as elementary-level math word problems. Analyzing these failures further reveals previously unidentified patterns of problems on which frontier models consistently struggle. We provide code at https://github.com/MadryLab/platinum-benchmarks
Related papers
- PredictaBoard: Benchmarking LLM Score Predictability [50.47497036981544]
Large Language Models (LLMs) often fail unpredictably.
This poses a significant challenge to ensuring their safe deployment.
We present PredictaBoard, a novel collaborative benchmarking framework.
arXiv Detail & Related papers (2025-02-20T10:52:38Z) - Are Large Language Models Memorizing Bug Benchmarks? [6.640077652362016]
Large Language Models (LLMs) have become integral to various software engineering tasks, including code generation, bug detection, and repair.
A growing concern within the software engineering community is that benchmarks may not reliably reflect true LLM performance due to the risk of data leakage.
We systematically evaluate popular LLMs to assess their susceptibility to data leakage from widely used bug benchmarks.
arXiv Detail & Related papers (2024-11-20T13:46:04Z) - Leaving the barn door open for Clever Hans: Simple features predict LLM benchmark answers [10.786564839628952]
Internal validity of AI benchmarks is crucial for ensuring they are free from confounding factors.
We investigate the possibility that AI systems can solve benchmarks in unintended ways, bypassing the capability being tested.
arXiv Detail & Related papers (2024-10-15T15:05:41Z) - Do These LLM Benchmarks Agree? Fixing Benchmark Evaluation with BenchBench [15.565644819269803]
We show how some overlooked methodological choices can significantly influence Benchmark Agreement Testing (BAT) results.
We introduce BenchBench, a python package for BAT, and release the BenchBench-leaderboard, a meta-benchmark designed to evaluate benchmarks using their peers.
arXiv Detail & Related papers (2024-07-18T17:00:23Z) - PaCoST: Paired Confidence Significance Testing for Benchmark Contamination Detection in Large Language Models [41.772263447213234]
Large language models (LLMs) are known to be trained on vast amounts of data, which may unintentionally or intentionally include data from commonly used benchmarks.
This inclusion can lead to cheatingly high scores on model leaderboards, yet result in disappointing performance in real-world applications.
We introduce PaCoST, a Paired Confidence Significance Testing to effectively detect benchmark contamination in LLMs.
arXiv Detail & Related papers (2024-06-26T13:12:40Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
Large language models(LLMs) have greatly advanced the frontiers of artificial intelligence, attaining remarkable improvement in model capacity.
To assess the model performance, a typical approach is to construct evaluation benchmarks for measuring the ability level of LLMs.
We discuss the potential risk and impact of inappropriately using evaluation benchmarks and misleadingly interpreting the evaluation results.
arXiv Detail & Related papers (2023-11-03T14:59:54Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
We propose a new protocol for inconsistency detection benchmark creation and implement it in a 10-domain benchmark called SummEdits.
Most LLMs struggle on SummEdits, with performance close to random chance.
The best-performing model, GPT-4, is still 8% below estimated human performance.
arXiv Detail & Related papers (2023-05-23T21:50:06Z) - What Will it Take to Fix Benchmarking in Natural Language Understanding? [30.888416756627155]
We lay out four criteria that we argue NLU benchmarks should meet.
Restoring a healthy evaluation ecosystem will require significant progress in the design of benchmark datasets.
arXiv Detail & Related papers (2021-04-05T20:36:11Z) - RobustBench: a standardized adversarial robustness benchmark [84.50044645539305]
Key challenge in benchmarking robustness is that its evaluation is often error-prone leading to robustness overestimation.
We evaluate adversarial robustness with AutoAttack, an ensemble of white- and black-box attacks.
We analyze the impact of robustness on the performance on distribution shifts, calibration, out-of-distribution detection, fairness, privacy leakage, smoothness, and transferability.
arXiv Detail & Related papers (2020-10-19T17:06:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.