論文の概要: AutoScraper: A Progressive Understanding Web Agent for Web Scraper Generation
- arxiv url: http://arxiv.org/abs/2404.12753v2
- Date: Thu, 26 Sep 2024 09:17:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 03:14:33.951648
- Title: AutoScraper: A Progressive Understanding Web Agent for Web Scraper Generation
- Title(参考訳): AutoScraper: Web Scraper生成のためのプログレッシブなWebエージェント
- Authors: Wenhao Huang, Zhouhong Gu, Chenghao Peng, Zhixu Li, Jiaqing Liang, Yanghua Xiao, Liqian Wen, Zulong Chen,
- Abstract要約: Webスクレイピングは、Webサイトからデータを抽出し、自動データ収集を可能にし、データ分析機能を強化し、手動のデータ入力作業を最小化する強力なテクニックである。
既存の手法では、ラッパーベースの手法は、新しいウェブサイトで直面する場合、適応性とスケーラビリティの制限に悩まされる。
本稿では,大規模言語モデル(LLM)を用いたWebスクレイパー生成のパラダイムを紹介し,多様なWeb環境をより効率的に処理できる2段階フレームワークであるAutoScraperを提案する。
- 参考スコア(独自算出の注目度): 54.17246674188208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Web scraping is a powerful technique that extracts data from websites, enabling automated data collection, enhancing data analysis capabilities, and minimizing manual data entry efforts. Existing methods, wrappers-based methods suffer from limited adaptability and scalability when faced with a new website, while language agents, empowered by large language models (LLMs), exhibit poor reusability in diverse web environments. In this work, we introduce the paradigm of generating web scrapers with LLMs and propose AutoScraper, a two-stage framework that can handle diverse and changing web environments more efficiently. AutoScraper leverages the hierarchical structure of HTML and similarity across different web pages for generating web scrapers. Besides, we propose a new executability metric for better measuring the performance of web scraper generation tasks. We conduct comprehensive experiments with multiple LLMs and demonstrate the effectiveness of our framework. Resources of this paper can be found at \url{https://github.com/EZ-hwh/AutoScraper}
- Abstract(参考訳): Webスクレイピングは、Webサイトからデータを抽出し、自動データ収集を可能にし、データ分析機能を強化し、手動のデータ入力作業を最小化する強力なテクニックである。
既存の手法であるラッパーベースの手法は、新しいウェブサイトで直面する場合、適応性とスケーラビリティの制限に悩まされる一方、言語エージェントは、大きな言語モデル(LLM)によって強化され、多様なWeb環境において、再利用性に乏しい。
本稿では, LLMによるWebスクレイパー生成のパラダイムを紹介し, 多様なWeb環境をより効率的に処理できる2段階フレームワークであるAutoScraperを提案する。
AutoScraperは、HTMLの階層構造と異なるWebページ間の類似性を活用して、Webスクレイパーを生成する。
また,Webスクレイパー生成タスクの性能評価を行うための新しい実行可能性指標を提案する。
複数のLLMを用いて包括的実験を行い,本フレームワークの有効性を実証する。
本論文の資料は \url{https://github.com/EZ-hwh/AutoScraper} で見ることができる。
関連論文リスト
- WebWalker: Benchmarking LLMs in Web Traversal [64.48425443951749]
WebWalkerQAは,LLMがWebトラバースを実現する能力を評価するためのベンチマークである。
本稿では,WebWalkerを提案する。WebWalkerは,探索的・批判的パラダイムを通じて,人間のようなWebナビゲーションを模倣するマルチエージェントフレームワークである。
論文 参考訳(メタデータ) (2025-01-13T18:58:07Z) - MRWeb: An Exploration of Generating Multi-Page Resource-Aware Web Code from UI Designs [50.274447094978996]
マルチページリソース対応Webページ(MRWeb)生成タスクは、UIデザインをマルチページ、内部/外部ナビゲーション、イメージローディング、バックエンドルーティングを備えた機能的なWebUIに変換する。
本稿では,500のWebサイト(300の合成,200の現実世界)を新たにキュレートしたデータセットを用いて既存のMRWeb問題に適用する。特に,Web UIの類似性を評価し,MRWeb生成に対するリソースリストの影響を評価し,MLLMの制約を分析し,MRWebツールの有効性を評価する。
論文 参考訳(メタデータ) (2024-12-19T15:02:33Z) - Web2Code: A Large-scale Webpage-to-Code Dataset and Evaluation Framework for Multimodal LLMs [112.89665642941814]
MLLM(Multimodal large language model)は、画像、ビデオ、オーディオなどのモダリティにおいて顕著な成功を収めている。
現在のMLLMは、Webページのスクリーンショットを理解し、対応するHTMLコードを生成するのに驚くほど貧弱です。
命令チューニングのための大規模Webページ・ツー・コードデータセットを新たに構築したベンチマークを提案する。
論文 参考訳(メタデータ) (2024-06-28T17:59:46Z) - AutoWebGLM: A Large Language Model-based Web Navigating Agent [33.55199326570078]
オープンなAutoWebGLMをChatGLM3-6Bに基づいて開発する。
人間のブラウジングパターンにインスパイアされた我々は、まず、Webページを表現するためのHTML単純化アルゴリズムを設計する。
次に,カリキュラム学習のためのWebブラウジングデータを構築するために,ハイブリッドなヒューマンAI手法を用いる。
論文 参考訳(メタデータ) (2024-04-04T17:58:40Z) - Cleaner Pretraining Corpus Curation with Neural Web Scraping [39.97459187762505]
本稿では,Webページから一次的かつクリーンなテキストコンテンツを抽出するための,シンプルで高速かつ効果的なNeuScraper(NeuScraper)を提案する。
実験結果から,NeuScraperは20%以上の改善を達成し,ベースラインスクラップラーを上回ることがわかった。
論文 参考訳(メタデータ) (2024-02-22T16:04:03Z) - A Real-World WebAgent with Planning, Long Context Understanding, and
Program Synthesis [69.15016747150868]
本稿では,WebAgentについて紹介する。WebAgentは自己経験から学習し,実際のWebサイト上でタスクを完了させるエージェントである。
WebAgentは、指示を標準のサブ命令に分解し、長いHTMLドキュメントをタスク関連スニペットに要約し、ウェブサイトで作用する計画である。
我々は、我々のモジュラーレシピが実際のWebサイトの成功を50%以上改善し、HTML-T5が様々なHTML理解タスクを解決する最良のモデルであることを実証的に実証した。
論文 参考訳(メタデータ) (2023-07-24T14:56:30Z) - Understanding HTML with Large Language Models [73.92747433749271]
大規模言語モデル(LLM)は、様々な自然言語タスクにおいて例外的な性能を示している。
我々は,HTML 理解モデル (微調整 LLM ) と,その機能に関する3つのタスクの詳細な分析に貢献する。
本稿では,標準自然言語コーパスで事前訓練されたLLMが,HTML理解タスクに極めて適していることを示す。
論文 参考訳(メタデータ) (2022-10-08T07:27:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。