Nonclassicality in Two-Mode Stabilized Squeezed Coherent State: Quantum-to-Classical transition
- URL: http://arxiv.org/abs/2404.12758v1
- Date: Fri, 19 Apr 2024 10:02:13 GMT
- Title: Nonclassicality in Two-Mode Stabilized Squeezed Coherent State: Quantum-to-Classical transition
- Authors: C. Lee, T. H. Yoon,
- Abstract summary: We introduce the $Pi_rm N$ indicator, a novel measure for characterizing nonclassicality in the resulting EPR-entangled state.
Our work deepens the understanding of the intricate dependence of nonclassicality on system parameters in the context of SSCS.
The potential of $Pi_rm N$ holds significant promise for advancements in quantum optics and information science.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a two-mode stabilized squeezed coherent state (SSCS) of light and introduce the $\Pi_{\rm N}$ indicator, a novel measure for characterizing nonclassicality in the resulting EPR-entangled state. Unlike existing methods based on Cauchy-Schwarz or Murihead inequalities, $\Pi_{\rm N}$ leverages analytical solutions to the quantum Langevin equations to directly analyze nonclassicality arising from key processes like bichromatic injection, frequency conversion, and parametric down-conversion (both spontaneous and stimulated). This approach not only identifies the optimal phase for maximum nonclassicality but also reveals two new phenomena: first, both intra-cavity and extra-cavity fields exhibit the same degree of nonclassicality, and second, balanced seeding in phase-mismatched configurations induces nonclassicality across a broad range of squeezing and seeding parameters. Our work deepens the understanding of the intricate dependence of nonclassicality on system parameters in the context of SSCS, paving the way for investigations into the quantum-to-classical transition in entangled systems. The potential of $\Pi_{\rm N}$ holds significant promise for advancements in quantum optics and information science.
Related papers
- The role of non-classicality in mediated spatial quantum correlations [0.0]
The study of non-classicality is essential to understand the quantum-to-classical transition in physical systems.
We propose a new inequality that quantitatively links the increase in quantum correlations between the probes to the degree of non-commutativity of the mediator's observables.
arXiv Detail & Related papers (2024-10-01T16:07:04Z) - Experimental demonstration of spontaneous symmetry breaking with emergent multi-qubit entanglement [10.791982177923412]
Spontaneous symmetry breaking ( SSB) is crucial to the occurrence of phase transitions.
We present an experimental demonstration of the SSB process in the Lipkin-Meshkov-Glick model.
The observed nonclassical correlations among these qubits in the symmetry-breaking region go beyond the conventional description of SSB.
arXiv Detail & Related papers (2024-07-17T13:50:29Z) - Classical and quantum facilitated exclusion processes [0.0]
We show that the quantum analogue of the classical facilitated process engineers an interesting $quantum$ $absorbing$ $transition$ where the quantum particles transit from an unentangled direct-product absorbing phase to an entangled steady state with a finite current at density $rho=1/2$.
Our work ties the two sub-fields of classically interacting exclusion processes, and interacting non-Hermitian quantum Hamiltonians to show common themes in the non-equilibrium phases they realise.
arXiv Detail & Related papers (2023-02-17T12:43:55Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Quantum-classical entropy analysis for nonlinearly-coupled
continuous-variable bipartite systems [0.0]
We investigate the behavior of classical analogs arising upon the removal of interference traits.
By comparing the quantum and classical entropy values, it is shown that, instead of entanglement production, such entropies rather provide us with information.
arXiv Detail & Related papers (2021-11-19T11:39:15Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Experimental certification of nonclassicality via phase-space
inequalities [58.720142291102135]
We present the first experimental implementation of the recently introduced phase-space inequalities for nonclassicality certification.
We demonstrate the practicality and sensitivity of this approach by studying nonclassicality of a family of noisy and lossy quantum states of light.
arXiv Detail & Related papers (2020-10-01T09:03:52Z) - Evaluating Single-mode Nonclassicality [0.0]
We apply the measure to evaluate and categorize different classes of nonclassical states.
We discover a class of states that can achieve the maximum nonclassicality in the limit of large mean number of excitations.
We also discover that the nonclassicality of certain states can be greatly improved with a single-photon addition.
arXiv Detail & Related papers (2020-06-30T11:31:18Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.