A Proactive Decoy Selection Scheme for Cyber Deception using MITRE ATT&CK
- URL: http://arxiv.org/abs/2404.12783v3
- Date: Wed, 16 Oct 2024 12:27:13 GMT
- Title: A Proactive Decoy Selection Scheme for Cyber Deception using MITRE ATT&CK
- Authors: Marco Zambianco, Claudio Facchinetti, Domenico Siracusa,
- Abstract summary: Cyber deception allows compensating the late response of defenders to the ever evolving tactics, techniques, and procedures (TTPs) of attackers.
In this work, we design a decoy selection scheme that is supported by an adversarial modeling based on empirical observation of real-world attackers.
Results reveal that the proposed scheme provides the highest interception rate of attack paths using the lowest amount of decoys.
- Score: 0.9831489366502301
- License:
- Abstract: Cyber deception allows compensating the late response of defenders countermeasures to the ever evolving tactics, techniques, and procedures (TTPs) of attackers. This proactive defense strategy employs decoys resembling legitimate system components to lure stealthy attackers within the defender environment, slowing and/or denying the accomplishment of their goals. In this regard, the selection of decoys that can expose the techniques used by malicious users plays a central role to incentivize their engagement. However, this is a difficult task to achieve in practice, since it requires an accurate and realistic modeling of the attacker capabilities and his possible targets. In this work, we tackle this challenge and we design a decoy selection scheme that is supported by an adversarial modeling based on empirical observation of real-world attackers. We take advantage of a domain-specific threat modelling language using MITRE ATT&CK framework as source of attacker TTPs targeting enterprise systems. In detail, we extract the information about the execution preconditions of each technique as well as its possible effects on the environment to generate attack graphs modeling the adversary capabilities. Based on this, we formulate a graph partition problem that minimizes the number of decoys detecting a corresponding number of techniques employed in various attack paths directed to specific targets. We compare our optimization-based decoy selection approach against several benchmark schemes that ignore the preconditions between the various attack steps. Results reveal that the proposed scheme provides the highest interception rate of attack paths using the lowest amount of decoys.
Related papers
- Securing Recommender System via Cooperative Training [78.97620275467733]
We propose a general framework, Triple Cooperative Defense (TCD), which employs three cooperative models that mutually enhance data.
Considering existing attacks struggle to balance bi-level optimization and efficiency, we revisit poisoning attacks in recommender systems.
We put forth a Game-based Co-training Attack (GCoAttack), which frames the proposed CoAttack and TCD as a game-theoretic process.
arXiv Detail & Related papers (2024-01-23T12:07:20Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - Resource-aware Cyber Deception for Microservice-based Applications [0.8999666725996975]
Cyber deception can be a valuable addition to traditional cyber defense mechanisms.
Pre-built decoys are not effective in detecting and mitigating actors in classical computer networks.
decoy cloning can offer a high-fidelity deception mechanism to intercept ongoing attacks within production environments.
arXiv Detail & Related papers (2023-03-06T14:08:57Z) - DOLOS: A Novel Architecture for Moving Target Defense [3.2249474972573555]
Moving Target Defense and Cyber Deception emerged in recent years as two key proactive cyber defense approaches.
This paper presents DOLOS, a novel architecture that unifies Cyber Deception and Moving Target Defense approaches.
We show that DOLOS is highly effective in slowing down attacks and protecting the integrity of production systems.
arXiv Detail & Related papers (2023-03-01T10:13:03Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
We develop a guided mechanism to avoid local minima during attack optimization, leading to a novel attack dubbed Guided Projected Gradient Attack (G-PGA)
Our modified attack does not require random restarts, large number of attack iterations or search for an optimal step-size.
More than an effective attack, G-PGA can be used as a diagnostic tool to reveal elusive robustness due to gradient masking in adversarial defenses.
arXiv Detail & Related papers (2022-12-30T18:45:23Z) - Object-fabrication Targeted Attack for Object Detection [54.10697546734503]
adversarial attack for object detection contains targeted attack and untargeted attack.
New object-fabrication targeted attack mode can mislead detectors tofabricate extra false objects with specific target labels.
arXiv Detail & Related papers (2022-12-13T08:42:39Z) - A Multi-objective Memetic Algorithm for Auto Adversarial Attack
Optimization Design [1.9100854225243937]
Well-designed adversarial defense strategies can improve the robustness of deep learning models against adversarial examples.
Given the defensed model, the efficient adversarial attack with less computational burden and lower robust accuracy is needed to be further exploited.
We propose a multi-objective memetic algorithm for auto adversarial attack optimization design, which realizes the automatical search for the near-optimal adversarial attack towards defensed models.
arXiv Detail & Related papers (2022-08-15T03:03:05Z) - I Know What You Trained Last Summer: A Survey on Stealing Machine
Learning Models and Defences [0.1031296820074812]
We study model stealing attacks, assessing their performance and exploring corresponding defence techniques in different settings.
We propose a taxonomy for attack and defence approaches, and provide guidelines on how to select the right attack or defence based on the goal and available resources.
arXiv Detail & Related papers (2022-06-16T21:16:41Z) - Zero-Query Transfer Attacks on Context-Aware Object Detectors [95.18656036716972]
Adversarial attacks perturb images such that a deep neural network produces incorrect classification results.
A promising approach to defend against adversarial attacks on natural multi-object scenes is to impose a context-consistency check.
We present the first approach for generating context-consistent adversarial attacks that can evade the context-consistency check.
arXiv Detail & Related papers (2022-03-29T04:33:06Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.